
A. Supplementary Material
Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes Using

Scene Graphs

This document supplements our main paper entitled
Graph-to-3D: End-to-end Generation and Manipulation of
3D Scenes using Scene Graphs by providing i) more details
on the data preparation and ii) inference mode. We iii) give
additional information on the employed GCN and discrim-
inators, as well as iv) shape generation networks. Further,
we provide v) more details on the employed baselines. We
vi) clarify the used metrics, i.e. define the computation of
our scene graph constraints used in the layout evaluation
and provide details of the top-K recall. Finally, vii) we re-
port the results of a user study and viii) demonstrate quali-
tative and diversity results for the generated 3D scenes.

A.1. Data preparation and annotation

In this section we provide more details on our data prepa-
ration pipeline, used to obtain and refine oriented bound-
ing boxes for 3RScan objects (c.f . Figure 1 for a common
ground truth scene example that illustrates the reconstruc-
tion partiality, as well as the respective scene graph from
3DSSG).

Extraction of 3D bounding boxes Figure 2 illustrates the
oriented bounding box preparation pipeline presented in the
main paper, in top-down view. Given the original point
cloud of an object (violet), the algorithm identifies the point
cloud rotation (blue) that leads to smallest surface area for
the axis-aligned bounding box. This rotation is then used to
transform the identified box back in the original point cloud
coordinates (green).

Canonical pose annotation We map the 160 object
classes in 3DSSG [7] to the RIO27 label set from
3RScan [6] and divide them in three categories, based on
their symmetry properties. Table 1 gives the full object class
list for each annotation category.

1. Objects with two symmetry axes such as tables, bath-
tubs, desks, walls, are annotated automatically, consid-
ering the direction with the largest size as front.

2. For a subset of objects, such as cabinet, shelf and oven,
we annotate automatically based on the following ob-
servation. Given that such objects are usually attached

to a vertical surface (wall) the 3D reconstruction for
their back side is missing. Therefore, we first apply
the rule of subset 1. to identify the directionless axis
and then define the front side of the object as the direc-
tion where the center of mass is leaning towards.

3. Objects with one symmetry axis such as chair, sofa,
sink, bed are annotated manually. The annotator is pre-
sented with the object point cloud, inside an oriented
bounding box, and is given four choices regarding the
front direction of the object.

Category Classes

1 table desk wall floor door window tv
curtain ceiling box bathtub object

2 cabinet nightstand shelf fridge lamp
blanket clothes oven towel pillow

3 chair sofa bed toilet sink

Table 1: Annotation categories mapped to RIO27 label set.

A.2. Inference

Generation Given a scene graph, we first sample a ran-
dom vector per-node from the gaussian prior. Then we feed
the augmented scene graph (class embeddings and sampled
vectors) to the shape and layout decoders to recover a 3D
scene.

Manipulation We first encode the input scene given the
scene graph (newly added nodes are again sampled from
the gaussian prior). We then run T to update the latent of
the changed nodes w.r.t. the new graph, decode the scene
and add the changes to the input scene.

A.3. Implementation details

We use 5 layers for each GCN model. In the encoders
Eshape and Elayout, prior to the GCN computation, the class
categories oi and rij are fed to embedding layers, while the
shape embedding, box and angles are projected through a
linear layer. All discriminators consist of fully-connected



Figure 1: Example of ground truth graph from 3DSSG and the respective 3D scan from the 3RScan dataset.

Figure 2: Data preparation (Top-down view of 3D point clouds). Violet: Original point cloud rotation. Blue: Point cloud
in rotation that gives the smallest axis-aligned surface area. Red: axis-aligned box. Green: Oriented bounding box resulting
from our data preparation.

layers, where all layers apart from the last one are followed
by batch norm and Leaky-ReLU. For Dbox (Table 2), con-
sisting of 3 layers, the last fully-connected layer is followed
by a sigmoid. Here the class categories oi and rij are fed in
one-hot form giving a size of 160 and 26. For Dshape (Ta-
ble 3) after two consecutive layers, we employ two branches
of fully-connected layers, followed by namely a softmax
(for classification, outC) and sigmoid (for discrimination,
outD). We use the Adam optimizer with a learning rate of
0.001 and batch size of 8, to train the model for 100 epochs.
The training takes one day on one Titan Xp GPU. The loss
weights are set to λKL = 0.1, λD,b = 0.1 and λD,s = 0.1.
The shape embeddings esi have a size of 128.

A.4. Generation of 3D scenes Fgen

Point clouds We base our point cloud approach on Atlas-
Net [2]. In particular, we employ AtlasNet to learn a low-
dimensional latent space embedding on the point clouds.
AtlasNet is grounded on PointNet [5] and consumes a whole
point cloud which it then encodes into a global feature de-
scriptor Eatlas. AtlasNet is particularly suited since the
sampling on the uv-map allows to generate point clouds
at arbitrarily resolutions while only using a small set of
points during training. This significantly speeds up train-
ing while saving memory, thus allowing larger batch sizes.
The 3D point cloud can be inferred by using this global fea-



layer layer input input output
id type layer channels channels

L1 Linear (oi, oj , rij , bi, bj) 360 512
L2 Batch Norm L1 512 512
L3 Leaky-ReLU L2 512 512
L4 Linear L3 512 512
L5 Batch Norm L4 512 512
L6 Leaky-ReLU L5 512 512
L7 Linear L6 512 1
out Sigmoid L7 1 1

Table 2: Architecture of Dbox

layer layer input input output
id type layer channels channels

L1 Linear esi 128 512
L2 Batch Norm L1 512 512
L3 Leaky-ReLU L2 512 512
L4 Linear L3 512 512
L5 Batch Norm L4 512 512
L6 Leaky-ReLU L5 512 512

L7 Linear L6 512 1
outD Sigmoid L7 1 1

L9 Linear L6 512 160
outC Softmax L9 160 160

Table 3: Architecture of Dshape

ture descriptor together with sampled 2D points from the
aforementioned uv-map running them through the decoder
Datlas. We train AtlasNet on a mixture of synthetic data
from ShapeNet and real 3RScan objects in canonical pose.

Implicit functions In addition, we also employ implicit
functions as shape representation using DeepSDF [4]. To
this end, we train an individual Auto-Decoder for each class
using ShapeNet [1]. Thereby, we use 350 shapes in canon-
ical pose and learn a 128-dimensional continuous shape
space. We then label each object in 3RScan with the best
fitting descriptor. Initially, we attempted to use a similar
partial scan alignment as originally proposed in [4]. Yet,
this did not work well in practice as the point quality was
too low. Hence, we instead simply queried each learned de-
scriptor from our shape space with the 3D points of the ob-
ject, and labeled the object with the descriptor giving mini-
mal average error in SDF. Notice that since we learn a gen-
erative model on top of these labels, Graph-to-3D can still
exploit the full potential of the continuous shape space.

A.5. Baseline details

For the variational AtlasNet (shape model without
without GCN) we enforce a Gaussian distribution onto

the embedding space of AtlasNet (AtlasNet VAE). In this
model, the shapes are generated without awareness of the
neighbouring objects. For a given point cloud si we can
compute the posterior distribution (µi, σi) = Egen(si) with
(µ, σ) being the mean and log-variance of a diagonal Gaus-
sian distribution. Sampling from the posterior allows to
generate on the fly new shapes during inference.

The progressive model receives at each step the cur-
rent scene, together with a new node na to be added.
Thereby, for the current scene nodes n, the model A re-
ceives the 3D boxes b as well as the category labels o for
nodes and edges r and predicts the new box according to
bi = A(oi, rij, zi, o, r, z). Here zi denotes randomly sam-
pled noise from a normal distribution with zero mean and
unit standard deviation. Note that for the new node ni, we
only feed the object category oi as well as its relationships
rij with existing objects j. During inference, the method
assumes the first node given, then gradually adds nodes and
connections. In manipulation mode, the method receives
a ground truth scene and a sequence of novel nodes to be
added. We train the progressive baseline with varying graph
sizes (2-10), such that it can learn to predict the consecu-
tive node for different generation steps. We order the nodes
based on the graph topology of the support relationships,
e.g. pillow is generated after the supporting bed. In addi-
tion, we place the disconnected nodes last in order.

A.6. Metrics

Scene graph constraints For layout evaluation w.r.t the
employed scene graph constraints, our metrics follow the
definitions from Table 4. Though ideally we want to val-
idate all edges in 3DSSG, not all of them can be captured
with a geometric rule, as they are manually annotated (e.g.
belonging to, leaning against).

Relationship Rule

left of cx,i < cx,j and iou(bi, bj) < 0.5
right of cx,i > cx,j and iou(bi, bj) < 0.5

front of cy,i < cy,j and iou(bi, bj) < 0.5
behind of cy,i > cy,j and iou(bi, bj) < 0.5

higher than hi + cz,i/2 > hj + cz,j/2
lower than hi + cz,i/2 < hj + cz,j/2

smaller than wilihi < wj ljhj
bigger than wilihi > wj ljhj

same as iouC(bi, bj) > 0.5

Table 4: Computation of geometric constraint accuracy, for
two instances i and j. iouC refers to iou computation after
both objects have been 0-centered.



gr
ap

h 
w

ith
 c

ha
ng

es
ge

ne
ra

tio
n

m
an

ip
ul

at
io

n

node addition relationship change

Figure 3: Generation (middle) and manipulation (bottom) of full 3D scenes from scene graphs (top) for the Graph-to-3D
model based on AtlasNet encodings for shape. The graph also contains the applied changes, in the form of dashed lines for
new/changed relationship, and empty nodes for added objects.

Top-K recall We utilize the same top-K recall metric as in
3DSSG [7] to evaluate the SGPN predictions. For each ob-
ject node or predicate, the top-K metric checks if the ground
truth label is within the corresponding top k classification
scores. To obtain a triplet score, we multiply the scores of
the two respective objects as well as the relationship predi-
cate. Then, similarly, we check if the ground truth triplet is
among the top-K scores.

A.7. User study

We conducted a perceptual study with 20 people eval-
uating ≈30 scenes each. Each sample features a scene
graph, the 3D-SLN [3] baseline with retrieved shapes from
ShapeNet and our shared model (given anonymously and
in random order). The users then rated each scene 1-7 on
three aspects 1) global correctness, 2) functional and style
fitness between objects and 3) correctness of graph con-
straints. 3D-SLN reported 2.8, 3.7, 3.6, respectively, while
ours exceeded them with 4.6, 4.9, 5.4. Our method was pre-
ferred in namely 72%, 62%, and 68% of the cases.

A.8. Additional Qualitative Results

In this section we demonstrate additional qualitative re-
sults for 3D layouts and full 3D scenes with shapes from
AtlasNet [2] as well as DeepSDF [4]. We would like to

emphasize that in our manipulation experiments, we in-
tentionally allow the network to also change the shape of
the objects that are involved in a relationship change, to
demonstrate diversity. Nonetheless, notice that we can al-
ternatively keep the shape unchanged, i.e. as in the origi-
nal scene, via transforming the original shape with the pre-
dicted pose.

A.8.1 3D scene generation and manipulation with the
AtlasNet based model

Figure 3 shows generation and manipulation of 3D scenes
from scene graphs using the Graph-to-3D model together
with AtlasNet [2]. It can be noted that similarly to the
DeepSDF [4] based encodings (c.f . Figure 4 in the main
paper), the model based on AtlasNet encodings is capable
of generating correct point clouds under their diverse class
categories, which are consistent with their semantic rela-
tionships. Further the manipulations are also appropriate
with respect to changes in the graphs.

A.8.2 Diverse scene generation

In Figure 4 we want to demonstrate that Graph-to-3D is able
to generate a diverse set of manipulations. To this end, we



input scene and graph diverse manipulations

(a) DeepSDF encodings

(b) AtlasNet encodings

Figure 4: Diverse generation of shapes and layout during manipulation. Given an input graph and correspondingly generated
scene (left), we obtain diverse results (right) for the added or changed objects.



first generate a scene given only a semantic scene graph.
Subsequently, we apply changes including additions and re-
lationship changes to the graph and let the model repeatedly
incorporate them. Notice that we run this experiment on top
of both generative models, i.e. AtlasNet and DeepSDF (c.f .
Figure 4 a) and b)). Hence, for the same input, Graph-to-3D
is capable of incorporating diverse manipulations in terms
of both – 3D shape as well as 3D location and orientation.

References
[1] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, et al. Shapenet: An information-
rich 3d model repository. arXiv preprint arXiv:1512.03012,
2015.

[2] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan
Russell, and Mathieu Aubry. AtlasNet: A Papier-Mâché
Approach to Learning 3D Surface Generation. In Proceed-
ings IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018.

[3] Andrew Luo, Zhoutong Zhang, Jiajun Wu, and Joshua B.
Tenenbaum. End-to-end optimization of scene layout. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020.

[4] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. Deepsdf: Learning continuous
signed distance functions for shape representation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 165–174, 2019.

[5] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification and
segmentation. arXiv preprint arXiv:1612.00593, 2016.

[6] Johanna Wald, Armen Avetisyan, Nassir Navab, Federico
Tombari, and Matthias Nießner. RIO: 3D Object Instance Re-
Localization in Changing Indoor Environments. In Interna-
tional Conference on Computer Vision (ICCV), 2019.

[7] Johanna Wald, Helisa Dhamo, Nassir Navab, and Federico
Tombari. Learning 3d semantic scene graphs from 3d indoor
reconstructions. In Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020.


