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In this supplementary material, we provide information
about the following: 1. Relation between attribute pre-
dictability and bias (Sec. 1), 2. Detailed algorithm (pseu-
docode) for PASS and MultiPASS (Sec. 2), 3. Hyperparam-
eters used for training PASS and MultiPASS systems (Sec.
3), 4. Hyperparameters for training IVE systems (Sec. 4),
5. Our hair-obscuring pipeline (similar to [1]) (Sec. 5), 6.
Detailed results (including verification plots) for de-biasing
methods applied on Arcface/Crystalface descriptors (Sec. 6),
7. Ablation study for PASS systems (Sec. 7), 8. Effect of
training a discriminative embedding (TPE[14]) on face de-
scriptors and their PASS counterpart (Sec. 8), 9. Advantages
of deploying PASS system over end-to-end training (Sec. 9),
10. Discussion about the trade-off between bias reduction
and drop in verification performance (Sec. 10).

1. Relation between predictability and bias
In the Section 3 of the main paper, we hypothesize that re-

ducing the ability to predict protected attributes (gender and
skintones) in face descriptors will reduce gender/skintone
bias in face verification tasks. This hypothesis is built on
the results of [7], which shows that adversarially removing
sensitive information from face representations reduces bias.
In the context of gender/skintone bias, we conduct additional
experiments to provide the reasoning for this hypothesis. We
compare the gender and skintone predictability (i.e. ability
to classify an gender/skintone) of face descriptors extracted
from Arcface and Crystalface networks and analyze the cor-
responding bias demonstrated by these networks.
Evaluating gender bias and predictability: Using the IJB-
C dataset, we first build a training set with 60k images (30k
males and females). Similarly, we construct a test set of 20k
images (10k males and females). The images for training and
testing are selected randomly, and the face descriptors are
extracted using the pre-trained networks (Arcface or Crystal-
face). There is no overlap between the identities in training
and testing set. Subsequently, we train an MLP classifier
on face descriptors of the training set to classify gender and
evaluate it on the test descriptors. This is done for both
Arcface and Crystalface descriptors. The MLP classifier

FPR 10−5 10−4 10−3

Network Acc-g TPRm TPRf Bias TPRm TPRf Bias TPRm TPRf Bias

Arcface 82.06 0.921 0.900 0.021 0.962 0.947 0.015 0.969 0.956 0.013
Crystalface 86.73 0.836 0.806 0.030 0.913 0.867 0.046 0.952 0.944 0.008

Table A1. Gender bias in IJB-C verification - Arcface vs Crystalface.
Acc-g = performance of MLP classifier in predicting Gender.

FPR 10−4 10−3 10−2

Network Acc-s TPRl TPRd Bias TPRl TPRd Bias TPRl TPRd Bias

Arcface 87.15 0.951 0.938 0.013 0.974 0.968 0.006 0.976 0.974 0.002
Crystalface 89.30 0.912 0.864 0.048 0.948 0.921 0.027 0.974 0.963 0.011

Table A2. Skintone bias in IJB-C verification - Arcface vs Crys-
talface. Acc-s = performance of MLP classifier in predicting
Skintone.

is a two hidden layer MLP with 128 and 64 hidden units
respectively with SELU activations, followed by a sigmoid
activated output layer. The gender classification accuracy
is reported in Table A1. Using the gender-wise verification
results in Figure 2(a) in the main paper, we also compute the
gender bias at every FPR and present it in Table A1.
Evaluating skintone bias and predictability: We follow

the same experimental setup for skintone. The only differ-
ence is that the training and testing sets are balanced in terms
of skintone (dark, medium and light) and the MLP has three
output nodes corresponding to light, medium, and dark skin-
tones. The skintone classification accuracy is reported in
Table A2. Using the skintone-wise verification results in
Figure 2(b) in the main paper, we also compute the skintone
bias at every FPR and present it in Table A2.

From the results in Tables A1 and A2, we find that Arc-
face descriptors have lower gender/skintone predictability
than Crystalface descriptors. Moreover, the Arcface de-
scriptors also demonstrate lower gender/skintone bias than
their Crystalface counterparts at most FPRs (Tables A1 and
A2). From this, we infer that face descriptors with low
gender/skintone predictability appear to demonstrate lower
gender/skintone bias in face verification, thus forming the
basis of our initial hypothesis. Therefore, we propose tech-
niques and construct baselines to reduce the predictability of
gender and skintone in face descriptors while making them
proficient in identity classification.



Algorithm 1 PASS
1: Required: Nep: Number of training episodes
2: Required: λ,K, Tfc, A∗, Tdeb, Tatrain, Tplat, Tep
3: Required Learning rates: α1, α2, α3

4: for i in range(Nep) do
5: Begin Stage 1 (initial training of M and C)
6: if i == 0 then
7: Initialize φM and φC with random weights
8: for n in range(Tfc) do
9: φM ←− φM − α1∇φMLclass(φM , φC)

10: φC ←− φC − α1∇φCLclass(φM , φC)
11: end for
12: end if
13: Begin Stage 2 (initial training of E)
14: if i mod Tep == 0 then
15: Initialize φE with random weights
16: for n in range(Tatrain) do
17: φE ←− φE − α2∇φELatt(φM , φE)
18: end for
19: end if
20: Begin Stage 3 (update M and C)
21: for n in range(Tdeb) do
22: φM ←− φM − α3∇φMLbr(φC , φM , φE)
23: φC ←− φC − α3∇φCLbr(φC , φM , φE)
24: end for
25: Begin Stage 4 (update Ek)
26: k = i mod K
27: for n in range(Tplat) do
28: Compute validation attribute prediction accuracy A of

Ek
29: if A > A∗ then
30: break
31: end if
32: φEk ←− φEk − α2∇φEk

L
(Ek)
att (φM , φEk )

33: end for
34: end for

Why reduce predictability of protected attributes? Re-
ducing predictability of a protected attribute from a face
descriptor to zero implies that no information about that at-
tribute is present in the descriptor. This also implies that no
information about the attribute is used to represent identity.
Thus, following from the data processing inequality [4], any
prediction that is a function of the descriptor is independent
of the protected attribute.

2. PASS and MultiPASS algorithm
In section 4.1.1 of the main paper, we explain the compo-

nents of our proposed adversarial PASS system and discuss
the stage-wise training procedure in section 4.1.2 (main pa-
per). Here, we present the detailed algorithm for PASS in
Algorithm 1.

Following this, we extend PASS to MultiPASS by reduc-
ing the information of two attributes simultaneously: At-
tribute a, with N (a)

att categories and attribute b, with N (b)
att

Algorithm 2 MultiPASS
1: Required: Nep: Number of training episodes
2: Required:λa, λb,Ka,Kb, Tfc, A

∗
1, A

∗
2

3: Required:Tdeb, T
(a)
atrain, T

(b)
atrain, Tplat, Tep

4: Required Learning rates: α1, α2, α3

5: for i in range(Nep) do
6: Begin Stage 1 (initial training of M and C)
7: if i == 0 then
8: Initialize φM and φC with random weights
9: for n in range(Tfc) do

10: φM ←− φM − α1∇φMLclass(φM , φC)
11: φC ←− φC − α1∇φCLclass(φM , φC)
12: end for
13: end if
14: Begin Stage 2 (initial training of E(a), E(b))
15: if i mod Tep == 0 then
16: Initialize φE(a) , φE(b) with random weights
17: for n in range(T (a)

atrain) do
18: φE(a) ←− φE(a) − α2∇φEL

(a)
att(φM , φE(a))

19: end for
20: for n in range(T (b)

atrain) do
21: φE(b) ←− φE(b) − α2∇φEL

(b)
att(φM , φE(b))

22: end for
23: end if
24: Begin Stage 3 (update M and C)
25: for n in range(Tdeb) do
26: φM ←− φM − α3∇φMLbr(φC , φM , φE(a) , φE(b))
27: φC ←− φC − α3∇φCLbr(φC , φM , φE(a) , φE(b))
28: end for
29: Begin Stage 4 (update E(a)

ka
, E

(b)
kb

)
30: ka = i mod Ka

31: kb = i mod Kb

32: for n in range(Tplat) do
33: Compute validation attribute prediction accuracy A1 of

E
(a)
ka

and A2 of E(b)
kb

34: if A1 > A∗
1 and A2 > A∗

2 then
35: break
36: end if

37: φ
E

(a)
ka

←− φ
E

(a)
ka

− α2∇φ
E

(a)
ka

L
(E

(a)
ka

)

att (φM , φE(a)
ka

)

38: φ
E

(b)
kb

←− φ
E

(b)
kb

− α2∇φ
E

(b)
kb

L
(E

(b)
kb

)

att (φM , φE(b)
kb

)

39: end for
40: end for

categories. The detailed algorithm for training MultiPASS
is provided in Algorithm 2. We include two ensembles of
discriminators in MultiPASS: one for attribute a, denoted as
E(a) and one for attribute b, denoted as E(b). Let E(a) and
E(b) consist of Ka and Kb adversary classifiers respectively.
The weights for all the classifiers in E(a) are collectively
denoted as φE(a) and those for E(b) are denoted as φE(b) .
The stage 1 training for model M in MultiPASS is same as
that in PASS.
Stage 2: In stage 2, we train both E(a) (for T (a)

atrain itera-



tions) and E(b) (for T (b)
atrain iterations). An adversarial clas-

sifier E(a)
k in E(a) is trained with a standard cross entropy

classification loss LE
(a)
k

att

L
E

(a)
k

att = −
N

(a)
att∑

i=1

ya,ilog y(k)a,i . (1)

Here ya denotes the one hot label with respect to attribute a.
y
(k)
a is the softmaxed output from the kth adversary classifier

in ensemble E(a). The classification loss L(a)
att (in line 17 of

Algorithm 2) for the entire ensemble E(a)
k is computed by

summing up LE
(a)
k

att as follows:

L
(a)
att =

Ka∑
k=1

L
E

(a)
k

att (2)

We train the classifiers in ensemble E(b) in a similar way.
Stage 3: Subsequently, we train model M for Tdeb iterations
to generate fout to classify identities (similar to stage 3 in
Algorithm 1), while reducing the information of attributes a
and b simultaneously. fout from M is provided to both E(a)

and E(b) for computing debiasing losses L(a)
deb and L(b)

deb (See
Eq. 14 in main paper). This is used to compute the bias
reducing classification loss Lbr (Eq 15 in the main paper).
Stage 4: After stage 3, we update the adversary classifiers in
E(a) and E(b). Using our proposed OAT strategy we choose
one classifierE(a)

ka
inE(a) andE(b)

kb
inE(b) (Lines 29 and 30

in Algorithm 2). We train them for Tplat iterations or until
E

(a)
ka

reaches a threshold accuracy of A∗1 and E(b)
kb

reaches
a threshold accuracy of A∗2 on the validation set. We run
stages 3 and 4 alternatively, for Tep episodes, after which we
re-initialize and re-train all the models in E(a) and E(b) (as
done in stage 2).

3. Hyperparameters for PASS and MultiPASS
We provide the hyperparameters used to train PASS-g

and PASS-s systems on Arcface and Crystalface descriptors
in Table A3.

In our MultiPASS framework, we use attribute a as gender
(N (a)

att = 2, male/female), and attribute b as race (N (b)
att = 4,

Caucasian/Indian/Asian/African). Thus E(a) is an ensemble
of gender classifiers and E(a) is an ensemble of race classi-
fiers. Note that, we train MultiPASS on BUPTBalancedFace
which consists of race labels, since we currently do not have
a large training dataset with skintone labels. The hyperpa-
rameters for MultiPASS systems are provided in Table A4.
We use a batch size of 400 in all the experiments.

4. Hyperparameters for IVE(g) and IVE(s)
IVE [17] is an attribute suppression algorithm that

uses a decision tree ensemble to score each variable in

Network Arcface Crystalface

Hyperparameter Stage PASS-g PASS-s PASS-g PASS-s

λ 3 10 10 1 10
K 2, 3, 4 3 2 4 2
Tfc 1 10000 10000 16000 16000
Tdeb 3 1200 1200 1200 1200
Tatrain 2 30000 30000 30000 30000
Tplat 4 2000 2000 2000 2000
A∗ 4 0.95 0.95 0.90 0.95
α1 1 10−2 10−2 10−2 10−2

α2 2,4 10−3 10−3 10−3 10−3

α3 3 10−4 10−4 10−4 10−4

Tep 3,4 40 40 40 40

Table A3. Hyperparameters for training PASS-g and PASS-s on
Arcface and Crystalface descriptors

Hyperparameter Stage Arcface Crystalface

λa 3 10 1
λb 3 10 10
Ka 2, 3, 4 3 4
Kb 2, 3, 4 2 2
Tfc 1 10000 16000
Tdeb 3 1200 1200
T

(a)
atrain 2 30000 30000
T

(b)
atrain 2 30000 30000
Tplat 4 2000 2000
A∗

1 4 0.95 0.90
A∗

2 4 0.95 0.95
α1 1 10−2 10−2

α2 2,4 10−3 10−3

α3 3 10−4 10−4

Tep 3,4 40 40

Table A4. Hyperparameters for training MultiPASS on Arcface and
Crystalface descriptors

face representations with respect to their importance for
a specific recognition task. Variables affecting attribute
classification in a significant way are then excluded from the
representation. Each step of exclusion removes ne variables
from the representation. The algorithm runs for ns steps,
thus resulting in removal of ns × ne variables from the
representation. We train IVE(g) by using face descriptors
of MS1M dataset, extracted using a pre-trained netowrk
(Arcface or Crystalface). The gender labels are obtained
using [12].

We follow the same experimental setup for training
IVE(s). The only difference is that the training dataset for
training IVE(s) is BUPT-BalancedFace [18]. The official
implementation for training IVE is publicly available [16].
In all of our IVE experiments, we use the parameters values
mentioned in the code, i.e. ns = 20 and ne = 5, thus result-
ing in 100 eliminations. Since face descriptors from Arcface
or Crystalface are 512-dimensional, the trained IVE(s/g)
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Figure A1. Our method for obscuring hair (Similar to [1]). On the
right, we show an aligned image without obscuring hair.

framework transforms the input descriptors for test images
into 512 − 100 = 412 dimensional descriptors. These de-
scriptors are then used to perform face verification.

5. Hair obscuring - Similar to [1]
In [1], it is shown that after obscuring hair in facial im-

ages, the resulting face descriptors extracted using Arcface
demonstrate lower gender bias. However, such experiments
are only performed on datasets with clean frontal faces in
MORPH [13] and Notre-Dame [10] datasets. The authors
used a segmentation network [20] to obscure the hair. But, in
complex datasets, e.g., IJB-C containing varied and cluttered
poses, segmenting out hair region is non-trivial and hard
to perform. Instead, we compute the face border keypoints
using [12] and obscure all the regions outside the polygon
formed by these keypoints. Our hair obscuring pipeline is
presented in Fig A1. Note that, [1] proposes hair-obscuring
as a possible approach to specifically mitigate gender-bias,
and not skintone bias. So, we do not evaluate the effect of
hair-obscuring while analyzing skintone bias.

6. Detailed results
6.1. PASS with Arcface

For PASS/MultiPASS systems trained on Arcface descrip-
tors, we provide the gender-wise and skintone-wise results in
Table 2 and 3 respectively in the main paper. We also present
the gender and skintone bias in Figure 6 in the main paper,
and show that the PASS/MultiPASS systems outperform the
IVE and hair-obscuring baselines at most FPRs. Here, we
provide the gender-wise and skintone-wise verification plots
for all the methods used to de-bias Arcface descriptors in Fig-
ure A2. Additionally, we also provide the overall verification
plots in Figure A3.

Although the main aim of using PASS-g is to reduce gen-
der predictability in face descriptors, we find (in Fig. A2a)
that the performance of female-female verification improves
between FPR 10−5 and 10−6. In fact, we find several exam-
ples of template pairs which are verified between these FPRs,
for both Arcface descriptors and their PASS-g counterparts.
In such pairs, we find the average cosine similarity of images
in templates that belong to the same female identity increases
after the face descriptors are transformed using PASS-g. We
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Figure A2. (a.) Gender-wise and (b.) Skintone-wise verification
plots for Arcface descriptors and their de-biased counterparts on
IJB-C
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Figure A3. Overall IJB-C verification plots of Arcface along with
(a.) Gender-debiasing algorithms, (b.) Skintone-debiasing algo-
rithms.
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Figure A4. Examples of templates in IJB-C verification for which
the average cosine similarity improved after PASS transformation.

show two examples of such templates in Fig A4.

6.2. PASS with Crystalface

It can be inferred from Tables A1 and A2 that descrip-
tors from Crystalface demonstrate higher gender/skintone
bias than those from Arcface. Therefore, we believe that de-
biasing Crystalface descriptors is a better testing ground
for de-biasing algorithms like PASS/MultiPASS. More-
over, this helps us assess the generalizability of proposed
PASS/MultiPASS systems. We provide the BPC values and
overall TPRs of all the approaches for de-biasing Crystalface
descriptors in Table 4 (for gender) and Table 5 (for skintone)
in the main paper, and show that PASS/MultiPASS systems
achieve higher BPC values than the baselines. Here, we pro-
vide the gender-wise and skintone-wise verification TPRs
(along with the corresponding bias values) in Tables A5 and
A6 respectively. Moreover, we provide the gender-wise and
skintone-wise verification plots for all the methods in Figure
A5. Also, we provide the overall verification plots for all
the methods in Figure A6. It should be noted in Tables A5



FPR 10−5 10−4 10−3

Network TPRm TPRf TPR Bias (↓) BPCg (↑) TPRm TPRf TPR Bias (↓) BPCg (↑) TPRm TPRf TPR Bias (↓) BPCg (↑)

Crystalface[11] 0.836 0.806 0.833 0.030 0.000 0.913 0.867 0.910 0.046 0.000 0.952 0.924 0.951 0.028 0.000
W/o hair[1] 0.424 0.713 0.589 0.289 -8.926 0.774 0.779 0.809 0.005 0.780 0.881 0.875 0.899 0.006 0.731
IVE(g)[17] 0.818 0.813 0.833 0.005 0.833 0.912 0.884 0.910 0.028 0.391 0.952 0.926 0.951 0.026 0.071

PASS-g 0.751 0.749 0.761 0.002 0.847 0.831 0.828 0.839 0.003 0.857 0.909 0.909 0.910 0.00 0.956
MultiPASS 0.699 0.713 0.708 0.014 0.383 0.811 0.808 0.809 0.003 0.823 0.879 0.883 0.881 0.004 0.784

Table A5. Gender bias analysis of Crystalface descriptors, and their transformed counterparts on IJB-C. TPR: overall True Positive rate,
TPRm: male-male TPR, TPRf: female-female TPR. Bold=Best, Underlined=Second best

FPR 10−4 10−3 10−2

Network TPRl TPRd TPR Bias (↓) BPCst(↑) TPRl TPRd TPR Bias (↓) BPCst(↑) TPRl TPRd TPR Bias (↓) BPCst(↑)

Crystalface[11] 0.912 0.864 0.910 0.048 0.000 0.948 0.921 0.951 0.027 0.000 0.974 0.963 0.974 0.011 0.000
IVE(s)[17] 0.912 0.862 0.910 0.050 -0.041 0.949 0.911 0.951 0.038 -0.407 0.975 0.953 0.974 0.022 -1.000

PASS-s 0.850 0.818 0.844 0.032 0.261 0.913 0.906 0.914 0.007 0.702 0.962 0.953 0.919 0.009 0.125
MultiPASS 0.826 0.838 0.809 0.012 0.639 0.907 0.907 0.881 0.000 0.927 0.953 0.953 0.968 0.000 0.994

Table A6. Skintone bias analysis of Crystalface descriptors, and their transformed counterparts on IJB-C. TPR: overall True Positive rate,
TPRl: light-light TPR, TPRd: dark-dark TPR. Bold=Best, Underlined=Second best
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(b)
Figure A5. (a.) Gender-wise and (b.) Skintone-wise verification
plots for Arcface descriptors and their de-biased counterparts on
IJB-C
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Figure A6. Overall IJB-C verification plots of Crystalface along
with (a.) Gender-debiasing algorithms, (b.) Skintone-debiasing
algorithms.

and A6 that although IVE achieves higher overall TPRs, it
hardly reduces bias, thus obtaining lower BPC values than
PASS/MultiPASS systems.

6.3. OAT v/s AET

In Figure A7, we visualize the results presented in Table
7 in the main paper.
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Figure A7. Comparison of bias for AET vs OAT in gender reduction
on (a) Arcface, (b) Crystalface.

6.4. Results with multiple skintones

In Equations 1 and 2 in the main paper, we define bias
as the absolute difference between the verification TPRs
of two groups at a given FPR. However, it possible that a
sensitive attribute consists of more than two categories. For
instance, the skintone attribute consists of three categories:
Light, medium, dark. In the main paper, we chose to de-
fine bias as the difference between the verification TPRs
of light-light and dark-dark pairs at a given FPR. However,
as shown in [18], we can also define bias as the standard
deviation (STD) among the verification TPRs of light-light
pairs, medium-medium pairs and dark-dark pairs. In Table
A7, we report these STD values for our PASS-s and Multi-
PASS systems (and the corresponding baselines) trained on
Crystalface descriptors, along with the average of the TPRs
obtained for the three skintone categories. We find that our
proposed PASS-s/MultiPASS systems obtain considerably
lower STD than existing baselines, thus mitigating skintone
bias. We also provide the skintone-wise verification plots
for all three skintones (light, medium and dark) on IJB-C
dataset in Figure A8



FPR 10−4 10−3 10−2

Method TPRl TPRmed TPRd Avg STD (↓) TPRl TPRmed TPRd Avg STD (↓) TPRl TPRmed TPRd Avg STD (↓)

Crystalface 0.912 0.912 0.864 0.896 0.023 0.948 0.939 0.921 0.936 0.011 0.974 0.964 0.963 0.967 0.005
IVE(s) 0.912 0.899 0.862 0.891 0.021 0.949 0.946 0.911 0.935 0.017 0.975 0.968 0.953 0.965 0.009

PASS-s (ours) 0.850 0.861 0.818 0.843 0.018 0.913 0.909 0.906 0.909 0.003 0.962 0.957 0.953 0.957 0.004
MultiPASS (ours) 0.826 0.838 0.838 0.834 0.006 0.907 0.908 0.907 0.907 0.0005 0.953 0.952 0.953 0.953 0.0005

Table A7. Average and Standard deviation (STD) among the verification TPRs of light-light pairs, medium-medium pairs and dark-
dark pairs. TPR: overall True Positive rate, TPRl: light-light TPR, TPRmed: medium-medium TPR, TPRd: dark-dark TPR. Bold=Best,
Underlined=Second best

FPR 10−5 10−4 10−3

Method TPRm TPRf TPR Bias (↓) BPCg (↑) TPRm TPRf TPR Bias (↓) BPCg (↑) TPRm TPRf TPR Bias (↓) BPCg (↑)

Crystalface + TPE 0.883 0.838 0.875 0.045 0.000 0.925 0.891 0.924 0.034 0.000 0.962 0.939 0.959 0.023 0.000
PASS-g + TPE 0.797 0.764 0.800 0.033 0.181 0.875 0.843 0.875 0.032 0.006 0.929 0.915 0.930 0.014 0.361

Table A8. IJB-C 1:1 verification results after applying TPE on face descriptors from Crystalface and its PASS-g counterpart. TPR: overall
True Positive rate, TPRm: male-male TPR, TPRf: female-female TPR.

10 5 10 4 10 3 10 2 10 1 100

False Positive Rate
0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

light-light pairs
med-med pairs
dark-dark pairs

(a) Crystalface

10 5 10 4 10 3 10 2 10 1 100

False Positive Rate
0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

light-light pairs
med-med pairs
dark-dark pairs

(b) IVE(s) on Crystalface

10 10 4 10 103 2 10 1 100

False Positive Rate

0.5 5

0.6

0.7

0.8

0.9

1.0

Tr
ue

Po
si

ti
ve

R
at

e

light-light pairs
med-med pairs 
dark-dark pairs

(c) PASS-s on Crystalface

10 10 4 10 103 2 10 1 100

False Positive Rate

0.5 5

0.6

0.7

0.8

0.9

1.0

Tr
ue

Po
si

ti
ve

R
at

e

light-light pairs
med-med pairs 
dark-dark pairs

(d) MultiPASS on Crystalface
Figure A8. Skintone-wise verification plots for all three skintones
on the IJB-C dataset for Crystalface descriptors and their skintone-
debiased counterparts

7. Ablation experiments: Effect of K,λ in
PASS

In Eq. 11 of the main paper, we combined a classifica-
tion loss Lclass and an adversarial de-biasing loss Ldeb to
compute a bias reducing classification loss Lbr as follows:

Lbr = Lclass + λLdeb (3)

Ldeb is computed using an ensemble of K attribute
classifiers that act as adversaries to model M . λ is the
weight applied on this de-biasing loss. Here, we evaluate
two hyperparameters used to train the PASS framework : (a)
the number of attribute classifiers K in the ensemble E used
to compute Ldeb (Eq. 10 in main paper). (b) the weight λ for
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(d) PASS-s on Crystalface (λ = 10)
Figure A9. Effect of varying K (number of adversary classifiers in
the ensemble E) in PASS systems

Ldeb defined in Eq. 3 here. We analyze how changing these
hyperparameters in PASS-g and PASS-s systems vary the
resultant gender bias reduction and verification performance
at a fixed FPR in the IJB-C dataset. We perform these
experiments on PASS-g and PASS-s trained on both Arcface
and Crystalface descriptors. For evaluating the PASS-g
systems, we report the gender bias and verification TPR at
FPR=10−5. For evaluating PASS-s systems, we report the
skintone bias and verification TPR at FPR=10−4. (See Fig.
A9 and A10)

Varying K (number of adversary classifier in the en-
semble) : We experiment with K = 2, 3, 4 and 10, while
fixing all the other parameters. The ablation results for
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Figure A10. Effect of varying λ (weight for Ldeb) in PASS systems
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Figure A11. (a.) Overall IJB-C verification plots, (b.) Gender-wise
IJB-C verification plots, (c.) Associated gender bias for Crystalface
descriptors and its PASS-g counterpart after applying TPE

PASS-g systems are presented in Figures A9a (for Arcface)
and A9b (for Crystalface). The results for PASS-s systems
trained on Arcface descriptors are presented in Figure A9c
and those for Crystalface descriptors are presented in Figure
A9d. We find that for both PASS-s and PASS-g systems,
increasing K generally lowers the corresponding bias but
also reduces the verification performance.

Varying λ (weight for Ldeb): We experiment with λ =

0.1, 1, 10 for training the PASS-s framework on Arcface
and Crystalface descriptors. All the other hyperparameters
remain fixed. The results are presented in Fig. A10. For
both PASS-g and PASS-s systems, we find that as we keep
on increasing the value of λ, the associated bias generally
decreases and the verification TPR keeps decreasing.

8. Bonus experiment: Effect of TPE
In [11], the face descriptors from Crystalface are not

directly used for verification. Instead, the descriptors
undergo triplet probabilistic embedding (TPE) [14] for
generating a template representation of a given identity. TPE
is an embedding learned to generate more discriminative,
low-dimensional representations of given input descriptors,
that have been shown to achieve better verification results.
We apply TPE on the descriptors obtained using Crystal-
face and find that TPE improves the overall verification
performance, but it also increases gender bias at all FPRs
(‘Crystalface + TPE’ in Table A8). We analyze if applying
TPE on PASS-g descriptors has the same effect. We learn a
TPE matrix using Crystalface descriptors transformed with
PASS-g. We apply this TPE matrix to transform the PASS-g
descriptors extracted for the test (IJB-C) dataset, the results
for which are presented in Table A8 (‘PASS-g + TPE’).
From Table A8 and Figure A11, we can infer that the gender
bias in the verification results obtained after applying TPE
on PASS-g transformed descriptors is lower than when TPE
is applied on original face descriptors of Crystalface.

To learn a triplet probabilistic embedding Wcf , we use
the descriptors from Crystalface (extracted for UMD-Faces
[2] dataset). This embedding Wcf ∈ R512×128 is then used
to transform the 512 dimensional IJB-C [9] descriptors
(extracted using Crystalface) to obtain 128-dimensional face
descriptors, which are used for 1:1 face verification. The
results of this experiment are provided in ‘Crystalface +
TPE’ in Table A8. We perform the same experiment with
the PASS-g transformed descriptors of Crystalface, where
a new TPE matrix W ′cf ∈ R256×128 is learned and used
to transform the IJB-C descriptors before performing 1:1
verification.

For training both, Wcf and W ′cf , we use a fixed learning
rate of 2.5× 10−3 and a batch size of 32. The training for
computing such a matrix using the descriptors from Crystal-
face (or its PASS-g counterpart) generally converges after
10k iterations. For a given set of descriptors, we compute its
TPE matrix ten times and finally compute the average of the
resulting matrices. We use this matrix to transform the test
descriptors. More details about TPE are provided in [14].

Note that, unlike Crystalface [11], Arcface [5] does not
mention applying TPE on the face descriptors and therefore
we do not apply TPE on PASS-based systems that are trained
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Figure A12. (a.) Example of a scenario where an agent CX can cause privacy breach in a private database D that contains a pre-trained face
recognition network P and face descriptors of four identities extracted using P . (b.) Training an end-to-end de-biasing system does not
allow us to re-use the pre-computed descriptors in D. (c) PASS can be train on top of descriptors from P and can re-use the pre-computed
descriptors in D to generate their gender-agnostic representations.

Method Training Backbone #Params w/o final classifn layer

Debface-ID[7] End-to-end ResNet-52 10.99 million
Demo-ID[7] End-to-end ResNet-52 10.99 million

GAC[8] End-to-end ResNet-52 10.99 million

PASS-g w/ AF Descriptor-based MLP 254,336
PASS-s w/ AF Descriptor-based MLP 213,504

MultiPASS w/ AF Descriptor-based MLP 336,768
PASS-g w/ CF Descriptor-based MLP 295,424
PASS-s w/ CF Descriptor-based MLP 213,504

MultiPASS w/ CF Descriptor-based MLP 377,856

Table A9. Number of trainable parameters in end-to-end and PASS-
based methods. AF=Arcface, CF=Crystalface

on Arcface.

9. Advantages of PASS over end-to-end sys-
tems

In section 5.4.3 of the main paper, we explained how
PASS/MultiPASS systems outperform end-to-end bias miti-
gation methods like [7] and [8] in terms of overall face veri-
fication performance. Apart from this, the PASS/MultiPASS
system is easier to deploy than end-to-end pipelines.

Training time: Most end-to-end bias-mitigation tech-
niques ([7] and [8]) use a ResNet architecture, for this reason
training such frameworks likely takes a long time. In con-
trast, our descriptor-based PASS/MultiPASS systems (which
are composed of MLPs) have fewer trainable parameters. In
Table A9, we compare the number of trainable parameters
(excluding the final identity classification layer) of PASS-
based systems and other end-to-end debiasing approaches.
Since PASS/MultiPASS systems have fewer trainable param-
eters, the training is relatively fast.

Note that we recognize that convolution layers and lin-
ear layers differ in number of floating-point operations per
weight, however, we use number of weights here as a rough
proxy for computation time.

Re-using pre-computed descriptors: We go back to the
example scenario described in Fig 1 of the main paper (and
here in Fig A12a). Suppose a malicious agent X has gained

access to a private database D (blue) which consists of a
pre-trained network P and face descriptors of four identi-
ties. The agent can use P to extract descriptors (red) for a
gender-labeled dataset DX (Step 1). Using these descrip-
tors, the agent can train a gender classifier CX (Step 2).
Using the trained CX , the agent can predict the gender of
the descriptors in D (Step 3) and thus cause privacy breach.

Let’s say we apply an end-to-end bias mitigation tech-
nique to prevent such privacy breach (Fig A12b). We first
need to train a network N on a dataset with identity and
gender labels. This step is time consuming. Also, once N
is trained, we need to re-extract the face descriptors for the
four identities using N . Thus, the pre-computed descriptors
in D cannot be re-used.

Instead, suppose that we deploy PASS-g for this task (Fig
A12c). We can use the pre-trained network P to first extract
face descriptors for a dataset with identity and gender labels.
Using these descriptors, we can train a PASS-g system. Once
trained, PASS-g can be quickly applied to the pre-computed
descriptors to generate their gender agnostic representations.
This re-use of existing descriptors is not possible using an
end-to-end de-biasing system. Thus, compared to end-to-end
de-biasing methods, PASS allows easier deployment.

10. A discussion about bias reduction and drop
in verification performance

Although PASS/MultiPASS systems are trained to reduce
sensitive information from face descriptors while maintain-
ing their identity classification capability, it is clear from
Figures A3 and A6 that reducing information of sensitive
attributes in face descriptors leads to a slight drop in verifica-
tion performance. This is not unexpected because attributes
like gender and race/skintone are entangled with identity
[6], and are integral to it . Hence, reducing the information
of such attributes is expected to slightly reduce the face de-
scriptors’ ability to classify identities. In fact, several works
that reduce information of sensitive attributes demonstrate a



drop in overall performance of the system. For instance, [3]
proposes a method to suppress gender in face representations
while performing the task of face recognition. Although this
method successfully enhances gender privacy in the repre-
sentations, it also leads to a slight drop in face recognition
performance. Similarly, [19] proposes a method to perform
activity recognition while reducing sensitive identity infor-
mation. However, this leads to a slight drop in the target
task of activity recognition. Also, [15] proposes a GAN-
based framework to generate a dataset that is fair (neutral)
in terms of gender and skintone, while performing the target
task of predicting attractiveness. While this method reduces
the gender/skintone bias in attractiveness prediction, this
also leads to a slight drop in the attractiveness prediction
accuracy.
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