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1. Implementation details

We implemented the architecture using PyTorch [1] with
a GPU-enabled backend. Ray tracing is based on the
method of [2], and for training we used Adam [3] as op-
timizer with default parameters. We used images from
CelebA dataset [4] in addition to 40K images collected
from the web for a total of 250K images. We keep 2K im-
ages for the validation. Images are aligned and cropped to a
resolution of 256 × 256. We trained E for 10 epochs, then
we fixed E and trained D1 and D2 for 5 epochs. Finally we
trained all networks jointly for 5 epochs. We set our regu-
larization weights as following: landmarks weight α1 = 1,
wi = 0.002, wc = 0.01, symmetry regularizer w1 = 20,
w2S = 0.01, smoothness regularizer w3 = 0.0001; and for
w2D, we start with w2D = 0.5, and decrease it by a factor
of 2 at each epoch. For E, we use a pre-trained ResNet-152
with latent space dimension equal to 1000. Both D1 and
D2 networks use a cascade of 7 convolution layers. Be-
cause ray tracing is very memory consuming, we use a tex-
ture resolution of 256 × 256 with batch size equal to 8 and
input image of resolution 256 × 256 to fit the GPU mem-
ory (12GB on a NVIDIA GeForce RTX 2080 Ti). For the
learning rates, we use 1e−6 for E and 1e−7 for D1 and
D2. For training, it takes 15 hours to do a single epoch.
During training, we use 8 samples per pixels for ray trac-
ing the images. We experimented with different numbers of
samples per pixel (spp) for ray tracing (8, 16 and 32 spp),
but we did not obtain substantial improvements when using
more than 8 spp, even though using 16 spp already made
the training much slower. Additionally, as skin is generally
not a highly specular surface, in our experiments, modeling
self-geometry ray bounces did not lead to substantial gain in
accuracy; thus we did not use it for training. The inference
takes 54 ms (47 ms for E and 7 ms for D1,D2).
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2. Vertex-based renderer implementation
In this section we provide implementation details of the

vertex-based renderer that we used to compare against the
ray tracer (please refer to section 5 in primary document).

The vertex based renderer computes the irradiance by
evaluating spherical harmonics (SH) for each vertex of the
face mesh. To model skin reflectance, we use a simplified
Cook-Torrance BRDF, thus the final irradiance is the sum of
diffuse and specular irradiance terms. For the diffuse term,
a spatial convolution with the half-cosine is applied to the
SH light representation. This corresponds to a multiplica-
tion of the SH coefficients (Blm) of the light representation
with SH coefficients (Al) of the half-cosine function ([5]).
For each vertex, the diffuse irradiance, Bd, is obtained by
evaluating the resulting SH:

Bd(ni, ci) = ci ·
8∑

l=0

l∑
m=−l

Al ·Blm · Ylm(ni) (1)

where ci ∈ R3 is the diffuse albedo of a vertex. ni ∈ R3

is the vertex normal. The specular term is similarly ob-
tained using a spatial convolution of the SH light representa-
tion with the BRDF kernel corresponding to the roughness
(which is constant in the simplified Cook-Torrance BRDF
model we use). The specular irradiance, Bs, is obtained by
evaluating the resulting SH:

Bs(Ri) =

8∑
l=0

l∑
m=−l

Sl ·Blm · Ylm(Ri) (2)

where Ri is the reflection direction of the viewing vector Wi

according to the surface normal, and Sl are the SH coeffi-
cients of the BRDF function corresponding to the roughness
[5]. The final irradiance B is equal to the sum of the diffuse
and specular terms weighted by the specular intensity si:

B(ni, ci,Ri) = (1− si) · Bd(ni, ci) + si · Bs(Ri) (3)

1



si ∈ R is the specular albedo.
Finally, We use the following vertex-based photo-

consistency loss to minimize during the training:

Eph(χ) =

N∑
i=1

|B(ni, ci,Ri)− IR(Π ◦ C(vi))| (4)

where N is the number of vertices, C(vi) is the projection
of vertex vi in the real image, equal to: R−1(vi − T). Π is
the perspective camera matrix that maps a 3D vertex to a
2D pixel.

3. Mesh difference
In this section, we provide more details on how the ge-

ometric error is calculated for each method (please refer to
Table 1 in primary document).

The mean difference error is computed per-vertex on the
entire mesh. We implement a 3D mesh evaluation proto-
col similar to [6]. For computing the mesh difference, we
first align a reconstructed mesh towards a ground truth (GT)
mesh. Several feature points, namely, sparse correspon-
dence points are defined on both the GT and reconstructed
facial meshes, where vertices are minimally affected by the
facial muscles. With the corresponding points ready on both
meshes, we use a traditional least-square estimation intro-
duced by [7] to align the two meshes. After this alignment,
we compute the distance from each vertex of a mesh to the
other via a fast ray-triangle intersection method [8]. The
average error is computed for final difference between two
meshes.

4. More comparison results
Figure 1 shows comparison results against the method of

[9]. For each subject, we show the final reconstruction, esti-
mated diffuse, specular and light for each method. The first
two subjects are from the authors of [9].
Quite logically, the iterative optimization-based method of
[9] achieves slightly better reconstruction results and cap-
tures more details in the estimated albedos. This is because
[9] estimates and fine-tunes the facial and scene parameters
specifically for each subject, while our method infers them
directly without fine-tuning. Nevertheless, our method is
almost on par with [9] and can successfully handle some
cases where [9] falters. For instance, with the last two sub-
jects of the Figure 1, in presence of shadows and strong
expression, landmarks detector deliver less accurate initial
starting points for the method of [9] which consequently
gets trapped in wrong local minima. This yields poor shape
and artefacts in the estimated albedos (highlighted in red
boxes). Our method does not suffer from this limitation,
proves to be more robust and produces visually more plau-
sible reconstruction. We note that [9] estimates a roughness

map, a parameter that we do not estimate. However, as re-
ported by the authors, the missing statistical prior of the
estimated roughness may sometimes yield to an over-fitting
on this parameter.

We show more qualitative comparison against [10], [11],
[12], and [13] in Figure 2. In Figure 3, we show more quan-
titative comparison against [10], [11], [12], and [9].

5. Face catalog
In Figure 4, we show more reconstruction results from

in-the-wild images. For each subject we show the final re-
construction and the estimated diffuse, specular albedos and
illumination. More results are in the accompanied video.

6. More relighting examples
Figure 5 and 6 show more relighting examples where

the estimated illumination is replaced with an environment-
map. More relighting results are in the accompanied video.
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Figure 1. Comparison against [9]



Figure 2. More visual comparisons against state-of-the-art methods.
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Figure 3. More geometric comparisons against state-of-the-art methods.





Figure 4. Face catalog of our reconstruction. For each subject, we show the input, final, diffuse, specular, and illumination. More results
are in the accompanied video.



Figure 5. Relighting examples (More relighting results are in the accompanied video).



Figure 6. Relighting examples (More relighting results are in the accompanied video).


