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Abstract

In this supplementary document, we provide additional
details for the varying focal length and distortion solvers.
Sec. 1 of this document specifies derivation details and
properties of the solvers. In Sec. 2, we show more exper-
imental results for the varying focal length and distortion
solvers. Also, results on undistorted images are reported.

1. Details on Solvers

1.1. Varying Focal Length Solver - H2f12(G)

H2f12(G) solver assumes two images with unknown and
different focal lengths. This case occurs, e.g., when the im-
ages are taken with a zooming camera. This is a 3-DOF
problem with respect to unknowns {s, f1, f2}, and we need
at least 1.5 point correspondences to solve it. In practice,
we still need to sample two points, but only 3 out of 4 lin-
early independent equations provided by two point corre-
spondences (Eq. (6) from the main paper) are used to solve
the problem. The 4th equation can be used to eliminate ge-
ometrically infeasible solutions.

In this case, one point correspondence results in three
equations (Eq. (6) from the main paper) of the form

a1 · [s2fw, s2f, s2w, s2, sfw, sf, sw, s, fw, f, w, 1]> = 0, (1)

a2 · [s2fw, s2f, s2w, s2, sfw, sf, sw, s, fw, f, w, 1]> = 0, (2)

a3 · [s2f, s2, sf, s, f, 1]> = 0, (3)

with w = 1
f2

and f = f1. Note, that only two out of these
three equations are linearly independent, due to the rank-2
skew symmetric matrix [pu

2i]× in Eq.(6) in the main paper.
Equation (3) is of degree 3 and does not contain the un-

known w. Therefore, two point correspondences give us
two equations of the form (3) in two unknowns {s, f1}.
These equations can be used to solve for {s, f1}. In this

case, f1 can be easily eliminated, leading to a quartic equa-
tion in s, which can be solved in closed-form. This is done
by rewriting two equations (3) as

C(s)
[
f1 1

]>
= 0 (4)

where C(s) is a 2 × 2 coefficient matrix, and the entries
of C are polynomials of degree 2 in the hidden variable
s. Since (4) has non-trivial solutions, matrix C(s) must be
rank-deficient. Thus, det(C(s)) = 0, which is a univari-
ate polynomial equation in s of degree 4. Once s is com-
puted, f1 can be extracted from the null space of matrix
C(s). Then substituting solutions for {s, f1} into (1) yields
up to 4 possible solutions to w = 1

f2
.

1.2. Varying Focal Length and Radial Distortion -
H3λ12f12(G)

The final case that we consider is the most general one,
in which the focal lengths and distortion parameters of the
two cameras are different. This situation occurs, e.g., when
the images are taken using a zooming wide-angle cam-
era. For this problem, there are a total of five unknowns
{s, f1, f2, λ1, λ2}. The minimal case is 3 point correspon-
dences, and it is similar to the 2-point solvers (H2λf (G),
H2f12(G)). We only need a single equation from the con-
straints implied by the last point correspondence.

In this case, similarly to the H2λf (G) solver, two out
of the three equations coming from Eq.(6) in the main pa-
per, are of degree 6 and one is of degree 4. However, now
we have equations in five unknowns. Again only two from
these three equations are linearly independent. Moreover,
the equation of degree four, i.e., the equation corresponding
to the last row of the matrix [pu

2i]×, has a simpler form and
contains only three unknowns {s, f1, λ1} as follows:

b[s2f1λ1, s
2f1, s

2, sf1λ1, sf1, s, f1λ1, f1, 1]
> = 0, (5)

where b is a coefficient vector. To simplify the solver, we
use only this simpler equation (5) from the third point corre-
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spondence, i.e. equation of degree four in three unknowns.
In this way, we obtain 5 polynomial equations in 5 un-
knowns. However, three of them contain only three un-
knowns {s, f1, λ1}.

Therefore, we can first use the three equations of
form (5) to solve for {s, f1, λ1}. We solve these equa-
tions using the hidden variable technique [3]. The basic
idea of this technique is to consider one of variables as a
hidden variable and then compute the resultant. We treat s
as the hidden variable, i.e., we hide it into the coefficient
matrix. The three equations (5) coming from the three cor-
respondences can be expressed in terms of the monomials
{f1, λ1, f1, 1} as

C(s)[f1λ1 f1 1]
> = 0, (6)

where C is of size 3 × 3 with entries that are polynomials
in the hidden variable s. In this case, C(s) has the form

C(s) =


C

[2]
1 (s) C

[2]
2 (s) C

[2]
3 (s)

C
[2]
4 (s) C

[2]
5 (s) C

[2]
6 (s)

C
[2]
7 (s) C

[2]
8 (s) C

[2]
9 (s)

, (7)

where the upper index [·] denotes the degree of the respec-
tive polynomial Ci(s). Since (6) has a non-trivial solution,
matrix C(s) must be rank-deficient. Thus, det(C(s)) = 0,
which is an univariate sextic equation in s that can be solved
using Sturm sequences. Once s is known, f1, λ1 can be ex-
tracted from the null space of the matrix C(s). Finally, f2
and λ2 can be extracted from the remaining two equations.

1.3. Special case

If the y-axis of the camera is considered to be physically
aligned with the gravity direction, we have R1 = R2 = I.
In this case, the homography matrix G can be simplified as

G = K̃2RyK̃
−1
1 . (8)

With this formulation, all the problems result in solving one
quadratic equation.

1.4. Computational Complexity

The complexity and run-time of a single estimation of the
new varying focal length and radial distortion solvers as
well as three state-of-the-art solvers for varying f and λ are
reported in the following table

Similar to the main paper we only show the major steps
performed by each solver. The number in the cells, e.g.
6×8, denotes the matrix size to which the G-J elimination or
Eigen-decomposition is applied. The number in the fourth
column denotes the degree of the univariate polynomial that
needs to be solved.

The properties of all these five solvers, e.g. the number
of solutions, DOF, reference, etc., are listed in Table 1

Solver G-J Eigen Poly Time (µs)

H3f1,2 - 7× 7 - 7
H5λ1,2 16× 21 5× 5 - 12
H6λ1,2 6× 8 - 2 14
H2f1,2(G) - - 4 5
H3λ1,2f1,2(G) - - 6 5

2. Additional Experiments

Synthetic evaluation. The synthetic data were generated
similar to the main paper. The only difference is that the
focal length of the second camera was set to 500 pixels.
To show the benefits of the varying focal length (distor-
tion) solvers, we use the best fixed focal length (distortion)
solvers as the baseline. Fig. 1a reports the focal length (left
column) and rotation errors (right) for the solvers assuming
zero distortion. Fig. 1b reports the relative focal length (left)
and absolute radial distortion error (right). We can see that
the varying focal length (distortion) solvers perform signifi-
cantly better than the fixed focal length (distortion) solvers.
In addition, our new solvers outperform the SOTA for most
of the cases.

Undistorted images. Since in the SUN360 dataset the
ground truth radial distortion parameters are known, we
used them to undistort the images. Fig. 2a shows the cu-
mulative distribution functions of the average run-times (in
seconds), re-projection errors (in pixels), and relative focal
length errors on 579, 800 image pairs. We do not show the
results of methods estimating the radial distortion. The pro-
posed H1f (G) solver is the fastest while leading to the most
accurate homographies and focal lengths.

Varying radial distortion and focal length solvers. In
general, finding or capturing stitching data with varying fo-
cal length and radial distortion is challenging. This stems
from the fact that stitching is usually done by a single cam-
era rotating around a 3D axis with a fixed focal length
and radial distortion. Still, there are application fields
where such solvers can be useful in practice, e.g., calibrat-
ing zooming PTZ cameras or rotating zooming surveillance
cameras. We, however, have not found publicly available
datasets for such problems. Therefore, we ran the varying
focal length and radial distortion solvers on the SUN360 and
the captured phone datasets, where both the focal length and
radial distortion are fixed.

In Fig. 2b, the cumulative distribution functions of all
solvers, including the ones assuming varying radial dis-
tortion or focal length, on the distorted images from the
SUN360 dataset and, also, on the captured phone dataset
are shown. The additional solvers that we include in
these experiments and were excluded from the main paper
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H3f1,2 H5λ12 H6λ12 H2f12(G) H3λ12f12(G)

reference [2] [4] [4]
Different focal lengths X X X X X
Radial distortion X X X
Different distortions X X X
Number of points 3 5 6 2 3
Number of solutions 7 5 2 4(2) 6(2)
Gravity prior X X
Pure R X X X
DOF 5 10 10 3 5

Table 1. The properties of the proposed gravity-based (gray) and state-of-the-art solvers. The number of solutions in brackets refers to a
special case when the y-axis of the camera is considered to be physically aligned with the gravity direction.
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(a) No radial distortion.

1 2 3 4 5

Image noise (pixel)

0

0.5

1

R
e
l.
 f
o
c
a
l 
le

n
g
th

 e
rr

o
r

1 2 3 4 5

Image noise (pixel)

-1

-0.5

0

0.5

1

A
b
s
. 
d
is

to
rt

io
n
 e

rr
o
r

0.1 0.2 0.3 0.4 0.5

Roll noise (deg)

0

0.5

1

R
e
l.
 f
o
c
a
l 
le

n
g
th

 e
rr

o
r

0.1 0.2 0.3 0.4 0.5

Roll noise (deg)

-1

-0.5

0

0.5

1

A
b
s
. 
d
is

to
rt

io
n
 e

rr
o
r

0.1 0.2 0.3 0.4 0.5

Pitch noise (deg)

0

0.5

1

R
e
l.
 f
o
c
a
l 
le

n
g
th

 e
rr

o
r

0.1 0.2 0.3 0.4 0.5

Pitch noise (deg)

-1

-0.5

0

0.5

1
A

b
s
. 
d
is

to
rt

io
n
 e

rr
o
r

(b) Radial distortion.

Figure 1. (a) Boxplot of the relative focal length error and rotation error for the zero distortion case. Left column: Relative focal length
error. Right column: Rotation error. (b) Boxplot of the relative focal length error and absolute distortion error for the distortion solvers.
Left column: Relative focal length error. Right column: Absolute distortion error. From top to bottom: increased image measurement
noise, increased roll noise and 2 pixel standard deviation image measurement noise, increased pitch noise with constant 2 pixel standard
deviation image measurement noise.

are H3f1,2 [2], H5λ1,2 [4], H6λ1,2 [4] and the proposed
H2f1,2(G) and H3λ1,2f1,2(G) algorithms.

On the SUN360 dataset, the added solvers do not change
the conclusions from the main paper – they perform rea-
sonably well but none of them are the most accurate nor the
fastest ones. This is to be expected since the SUN360 dataset
contains images with the same radial distortion and focal
length. As expected due to the large sample size, H5λ1,2

and H6λ1,2 are among the slowest methods when used for
fitting to minimal samples.

On the captured phone dataset, the proposed H2f1,2(G)
solver performs remarkably efficiently and accurately. To-
gether with the proposed H1f (G) algorithm, they are the
fastest and most accurate methods for image stitching in the
semi-calibrated case, i.e., with unknown focal length.
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(a) Undistorted images. Solvers not estimating radial distortion.
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(b) Distorted images. All solvers.
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(c) Phone dataset. All solvers.

Figure 2. The cumulative distribution functions of the processing times (in seconds), average re-projection errors (in pixels) and relative
focal length errors of GC-RANSAC [1] when combined with different minimal solvers. In the top two rows, the values are calculated from
a total of 579, 800 image pairs from the SUN360 dataset. In the bottom row, the values are calculated from a total of 7, 770 image pairs
from the captured phone dataset. The confidence was set to 0.99 and the inlier threshold to 3 px. Being accurate is interpreted as a curve
close to the top-left corner.

3. Example Panoramic Stitching Results

Example panoramic stitching results on sequences from
the SUN360 and Smartphone datasets are shown in Fig. 3.
The image rotations are estimated by the proposed algo-
rithm. Bundle adjustment then minimized the re-projection

error throughout the entire sequence. The images are
warped together considering spherical views, a Graph-Cut-
based seam finder [5] is applied, and a multiband blender
blends the images together.
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(a) Example result on a sequence from the SUN360 dataset [6].

(b) Example result on a sequence from the captured Smartphone dataset.

Figure 3. Example stitching results on sequences from the SUN360 and Smartphone datasets. The image rotations are estimated by the
proposed algorithm. Bundle adjustment then minimized the re-projection error throughout the entire sequence. The images are warped
together considering spherical views, a Graph-Cut-based seam finder [5] is applied, and a multiband blender blends the images together.
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