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This document supplements the main paper. Firstly,
comparisons with the state-of-the-art methods under three
other criteria on BRATS2020 are reported in Table 1. Sec-
ondly, more comparisons with the state-of-the-art meth-
ods (i.e., HeMIS [3], U-HVED [2] and RobustSeg [1]) on
BRATS2015 and BRATS2018 are reported in Table 2 and
Table 3, respectively. Thirdly, more visual results of RFNet
are illustrated in Fig. 1. Furthermore, more qualitative com-
parisons with the state-of-the-art are illustrated in Fig. 2.
Fourthly, illustrations of probability maps of the combina-
tions of different modalities are shown in Fig. 3. Fifthly,
more examples of generated attention weights are illustrated
in Fig. 4 and Fig. 5. Finally, Figure 6 illustrates the detailed
architecture of the encoder and decoder in RFNet.

Comparisons under other criteria on BRATS2020: Ta-
ble 1 report the specificity, sensitivity and Hausdorff dis-
tance (95%) on BRATS2020. As shown in Table 1, our
RFNet also outperforms the state-of-the-art in terms of the
three criteria on BRATS2020.

Comparisons on BRATS2015 and BRATS2018: Table
2 and Table 3 report the segmentation accuracy from all
modal combinations on BRATS2015 and BRATS2018, re-
spectively. As visible in Table 2 and Table 3, our RFNet
is able to improve the accuracy for all the modal combina-
tions significantly on the two datasets. This demonstrates
the superiority of our method.

Visualization of the predicted segmentation masks: As
seen in Fig. 1, our RFNet is able to segment brain tumors
in various combinations of modalities. Furthermore, we
also compare our RFNet with three state-of-the-art methods
qualitatively, as shown in Fig. 2. By comparing the predic-
tions of our RFNet and other methods, we can see that our
method predicts more accurate segmentation maps.

Visualization of the estimated probability maps: As
shown in Fig. 3, our RFNet is able to generate accu-
rate probability maps from various combinations of image
modalities. Thus, the probability maps significantly facil-
itate our region-aware fusion and improve the accuracy of

Table 1. Comparisons under three testing criteria on BRATS2020.
’Com’, "Cor’ and "Enh’ denotes the whole tumor, the tumor core
and the enhancing tumor.

Methods specificity (%) T | sensitivity (%) T |Hausdorff95 (mm) |
Com Cor Enh |Com Cor Enh |Com Cor Enh

HeMIS [14] [82.72 66.88 62.40|99.55 99.79 99.77|12.73 13.30 32.84

U-HVED [10]|81.73 68.16 64.09|99.60 99.78 99.78|13.13 16.01 32.69

RobustSeg [3]

88.5275.70 72.22

99.48 99.78 99.77

18.3721.34 33.98

Ours

89.42 80.91 73.65

99.60 99.81 99.81

7.88 8.80 25.85

our segmentation results.

Visualization of the generated attention weights: Fig-
ure 4 and Figure 5 illustrate the generated attention weights
of our RFM. Particularly, the attention weights for all the
combinations of four image modalities in the fourth stage
are reported in Fig. 4, while Fig. 5 illustrates the generated
attention weights from the full set (without missing modal-
ities) in all four stages. As shown in Fig. 5 and Fig. 4,
our RFNet is able to pay more attention to more sensitive
modalities in each region, thus achieving superior segmen-
tation performance.

Architecture of RFNet: RFNet employs the same encoder
and decoder architectures as in [1], as visible in Fig. 6.
Therefore, our performance gain mainly comes from our
proposed RFM and regularization. As shown in Fig. 6, the
four-stage/level encoder and decoder are employed. In each
stage, each encoder employs a residual convolutional block
(including two 3 x 3 x 3 convolutional layers followed by
the corresponding instance normalization layers and Leaky
ReLU activation) to extract features. Furthermore, convo-
lutional layers with a kernel size of 3 x 3 x 3 and a stride
of 2 are employed to reduce the feature resolutions and in-
crease the channel numbers accordingly. The initial channel
number is set to 16. In our decoder, an up-sampling layer
followed by convolutional layers is used to increase the res-
olutions of feature maps. For RFM, we leverage 3 x 3 x 3
convolutional layers to extract features and 1 x 1 X 1 con-
volutional layers for the probability map generation.



Table 2. Comparisons with the state-of-the-art methods, including HeMIS [3], U-HVED [2] and RobustSeg [ 1], on BRATS2015. Complete,
Core and Enhancing denote the Dice scores of the whole tumor, the tumor core and the enhancing tumor, respectively. The results of U-
HVED [2] are reproduced based on the authors’ codes.

Modalities Dice scores (%)
Complete Core Enhancing

F Tl Tlc T2 | HeMIS U-HVED RobustSeg Ours | HeMIS U-HVED RobustSeg Ours | HeMIS U-HVED RobustSeg Ours
O O O e | 5848 81.19 85.49 86.89 | 40.18 53.40 58.66 63.81 | 20.31 29.05 37.66 40.07
O O @ O 3346 67.48 71.86 74.95 | 44.55 68.24 72.87 72.64 | 49.93 71.54 70.22 81.40
O @ O O 3322 53.58 68.40 7420 | 17.42 41.14 50.00 61.27 | 4.67 19.16 22.67 29.44
® O O O 7126 83.82 83.02 86.91 | 37.45 51.37 46.67 5871 | 5.57 22.18 28.30 35.23
O O e e | 675 84.77 87.53 88.39 | 63.39 73.18 78.46 77.50 | 65.38 83.54 76.82 86.97
O @ @ O 4593 69.65 74.59 78.13 | 55.06 68.85 76.40 74.06 | 62.40 76.96 73.95 82.48
® ¢ O O 8028 85.82 87.66 88.51 | 49.52 58.39 60.17 66.88 | 22.26 26.65 35.28 40.95
O @€ O @ | 6956 82.17 87.87 88.25 | 47.26 57.58 64.88 67.24 | 23.56 33.94 41.05 40.58
® O O e | 810 87.74 89.08 89.62 | 53.42 59.13 63.51 68.74 | 23.19 30.31 39.72 44.64
® O @ O 7980 87.48 88.01 88.45 | 66.12 74.27 78.09 79.30 | 67.12 84.30 76.62 86.15
® 6 O O | 8088 87.91 87.73 88.75 | 69.26 75.82 80.68 80.46 | 71.30 84.33 78.81 87.30
® ¢ O e | 8387 87.59 89.07 89.93 | 57.76 62.43 65.99 69.75 | 28.46 33.21 43.04 44.21
e O e e | 827 89.85 89.06 90.07 | 70.62 75.10 79.47 79.29 | 70.52 86.03 78.07 87.34
O @€ @ @ | 7098 84.72 88.26 88.41 | 66.60 74.85 80.84 79.18 | 67.84 84.03 78.56 87.47
® ¢ O o  33I5 89.79 89.07 90.49 | 72.50 76.48 81.19 80.16 | 75.37 86.12 79.13 87.68

Average 68.22 81.57 84.45 86.13 | 54.07 64.68 69.19 71.93 | 43.86 56.76 57.33 64.13

Table 3. Comparisons with the state-of-the-art methods, including HeMIS [3], U-HVED [2] and RobustSeg [ 1], on BRATS2018. Complete,
Core and Enhancing denote the Dice scores of the whole tumor, the tumor core and the enhancing tumor, respectively. The results of
RobustSeg [ 1] are provided by the authors.

Dice scores (%)

Modalities
Complete Core Enhancing

F Tl Tlc T2 | HeMIS U-HVED RobustSeg Ours | HeMIS U-HVED RobustSeg Ours | HeMIS U-HVED RobustSeg Ours
O O O e 7920 80.90 82.24 84.30 | 40.18 54.10 57.49 67.62 | 20.31 30.80 28.97 40.71
O O e O 5850 62.40 73.31 74.93 | 44.55 66.70 76.83 80.99 | 49.93 65.50 67.07 69.43
O @ O O 5430 52.40 70.11 74.68 | 17.42 37.20 47.90 64.42 | 4.67 13.70 17.29 34.43
®@ O O O 799 82.10 85.69 86.46 | 37.45 50.40 53.57 64.89 | 557 24.80 25.69 33.92
O O e @ | 8100 82.70 85.19 86.39 | 63.39 73.70 80.20 83.27 | 65.38 70.20 69.71 73.01
O @€ @ O 6380 66.80 77.18 78.59 | 55.06 69.70 78.72 82.22 | 62.40 67.00 69.06 70.73
® @€ O O 8.9 84.30 88.24 88.78 | 49.52 55.30 60.68 71.59 | 22.26 24.20 32.13 39.68
O @€ O e | 8080 82.20 84.78 86.15 | 47.26 57.20 62.19 70.89 | 23.56 30.70 32.01 41.42
® O O @ | 86.00 87.50 88.28 89.12 | 53.42 59.70 61.16 70.82 | 23.19 34.60 33.84 43.77
® O e O 830 85.50 88.51 89.17 | 66.12 72.90 80.62 82.94 | 67.12 70.30 70.30 72.84
® ¢ O O | 810 86.20 88.73 89.71 | 69.26 74.20 81.06 83.77 | 71.30 71.10 70.78 7317
® ¢ O e | 87.00 88.00 88.81 89.68 | 57.76 61.50 64.38 73.09 | 28.46 34.10 36.41 44.79
e O e e | 87.00 88.60 89.27 90.06 | 70.62 75.60 80.72 83.54 | 70.52 71.20 70.88 73.13
O @ e e | 8210 83.30 86.01 86.78 | 66.60 75.30 80.33 83.97 | 67.84 71.10 70.10 72.56
® 6 O o | 8760 88.80 89.45 90.26 | 72.50 76.40 80.86 84.02 | 75.37 71.70 71.13 73.21

Average 78.60 80.10 84.39 85.67 | 54.07 64.00 69.78 76.53 | 43.86 50.00 51.02 57.12
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Figure 1. Visualization of the predicted segmentation maps. Left: four image modalities. Right: segmentation maps predicted by our
RFNet from all fifteen combinations of image modalities and the corresponding ground-truth.
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Figure 2. Qualitative comparisons with the state-of-the-art methods. Two tumor cases are illustrated in left and right columns. Top: four

image modalities are shown; Bottom: segmentation maps predicted by four methods (i.e., HeMIS [3], U-HVED [2], RobustSeg [1] and
our RFNet) and the corresponding ground-truth are shown.
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Figure 3. Visualization of the probability maps. Two tumor cases are illustrated in left and right columns. Top: four image modalities are
shown. Bottom: our estimated probability maps from all the combinations of image modalities at different stages and their corresponding
ground-truth are illustrated.
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Figure 4. Visualization of the generated attention weights by our RFM at the fourth stage. Two examples are shown in the top and bottom
parts, respectively. For each example, fifteen panels illustrate all combinations of four image modalities. In each panel, attention weights
(in numbers) are used to aggregate available modalities (in colors) adaptively in diverse regions (in rows). Larger colored bars denote larger
attention weights for the corresponding modality.
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Figure 5. Visualization of the generated attention weights from the full set of four image modalities in different stages. Two examples
are shown in the top and bottom parts, respectively. In each example, four panels indicate the attention weights at different stages in our
network.
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Figure 6. Visualization of the encoder and decoder in RFNet. Each convolutional layer, except for the last segmentation layer, is followed
by an instance normalization layer and Leaky ReLU activation.



