
Rethinking 360° Image Visual Attention Modelling with Unsupervised Learning.

Yasser Abdelaziz Dahou Djilali*, Tarun Krishna*, Kevin McGuinness and Noel E. O’Connor
Insight Centre for Data Analytics, Dublin City University (DCU)

{yasser.dahoudjilali2, tarun.krishna2}@mail.dcu.ie

A. Architecture Details
A.1. VGG16

• Encoder: VGG16 encoder is derived from SalGAN
[3]1.

• Global module: It comprises of a convolution block i.e
Conv2D → BatchNorm2D → ReLU → MaxPool2D]
followed by two linear layers with rectified linear units
to get a global representation.

• Local module: Consists of 2×[Conv2D→ ReLU] fol-
lowed by a BatchNorm2D layer to final local represen-
tation.

A.2. ResNet50

This sub-section gives a detailed overview of the
ResNet50 based encoder and its corresponding global/lo-
cal module. The naming convention used is similar to [1].

• Encoder: Figure 1 depicts the ResNet50 architecture
used up to the average pooling layer ignoring the last
fully connected and consequently softmax layer. The
encoder fθ is composed of a ResNet50 up to conv4 x
and an extra set of convolution layers denoted by Γη.
This was done to keep the channel dimension fixed to
512 so as to be consistent with the VGG based model.

• Global module Σσ is composed of Hµ and conv5 x
up to the average pooling layer followed by
two linear layers with rectified linear units. Again, Hµ

was added to increase the channel dimensions to 1024
to make it compatible with input channel dimension of
conv5 x i.e., the original pipeline of ResNet (as we
extend conv4 x to have 512 dimensions) to have same
channel dimension of 1024.

• Local module is exactly same as VGG16 (local mod-
ule).

*Equal contribution
1Code: https://github.com/imatge-upc/salgan

µ and η are parameters to sub-functionH and Γ respectively.
Global module can also be consider as a projection layer

as used in most of the self-supervised models but in this case
it is applied in an asymmetric way.

A.3. Self-Attention

Listing 1 depicts the PyTorch styled implementation of
the self-attention module. This takes as input the source
(Λx = fθ(x)) and augmented (Λxt

= fθ(xt) local latent
representations, which has dimension 512×10×20. The ob-
jective of this module is to provide a mechanism to perform
feature selection between the feature maps of two views. To
achieve this, the latent representations are transformed into Q
(query) and K (key) feature spaces through weight matrices
WQ and WK. Attention is calculated through dot product
between the two representations i.e WQ(Λx) and WK(Λxt

).
This dot product is calculated between each location “vec-
tor” (i.e. for each location {(:, i, j)

∣∣∣ : i ∈ {1, . . . , 10}, j ∈
{1, . . . , 20}}) across two views (WQ(Λx) and WK(Λxt)),
resulting in attention weights of size 200× 502. In Listing
1, K is max-pooled to reduced for spatial resolution which
results in an attention matrix of size 200 × 50 (instead of
200× 200). Intuitively, this means performing the dot prod-
uct of each location vector (Q) with a patch (in K) because
each pixel has a receptive field of 4 in K due to the max-
pooling. Once we have these attention weights we could now
perform feature selection through V (value) i.e WV(Λxt

).
Further O is multiplied by γ and added to Λxt

. This residual
connection modulates the value of γ in terms of the extra
contribution. In our case γ achieves a value of 8.0 after 250
epochs. The choice to reduce the channel dimensions and
applying pooling was done following [6]3.
in_channel = 512
K = 8
γ = 0 #trainable parameter

#64:=512/K,256:=512/2
WQ = nn.Conv2d(512, 64, (1,1))
WK = nn.Conv2d(512, 64, (1,1))

2excluding batch-size for simplicity
3Implementation is taken from here [6] and adopted to PyTorch

1



Figure 1: Detailed architecture for ResNet50 based encoder.

WV = nn.Conv2d(512, 256, (1,1))
WO = nn.conv2d(256, 512, (1,1))

def selfAttention(Λx,Λxt):
#Λx,Λxt latent representations for x and xt

#Get Query
Q = WQ(Λx)#(bsz,64,10,20)
Q = Q.view(bsz,64,-1).permute(0, 2, 1)#(bsz
,200,64)

#Get Key
K = WK(Λxt)#(bsz,64,10,20)
K = F.MaxPool2D(K) #over (2,2) patches
K = K.view(bsz, 64, -1)#Reshape (bsz,64,50)

#Calculate importance weights
attn = torch.bmm(Q, K) #(bsz, 200, 50)
attn = F.softmax(attn, dim=-1) #Softmax
attn = attn.permute(bsz,2,1)#(bsz, 50, 200)

#Get Value
V = WV(Λxt)#(bsz,256,10,20)
V = F.MaxPool2D(V) #over (2,2) patches
V = V.view(bsz, 256, -1)#reshape (bsz,256,50)

#Get importance vectors
attn_val = torch.bmm(v, attn)#(bsz, 256, 200)
attn_val = attn_val.reshape(bsz, 256, 10,20)

#Apply another projection
O = WO(attn_val)

return O*γ + Λxt

Listing 1: PyTorch-based implementation

B. Results
It can be seen in Figure 2 and Figure 3 that the VGG-

based model overly biases the saliency to the equator. Since
the encoder’s weights were fixed when training the decoder
on saliency, the learning relies on the latent representations
learned from the unsupervised training. The sequential ar-
chitecture of VGG causes gradient vanishing in the early
layers (i.e. they do not change much from the initial ini-
tialization). Figure 4 show the normalized Frobenius norm
difference between the weights at epochs 250 and 10 per
layer; the ResNet-based encoder parameters change by more
than 2-fold on average, whereas the VGG weights do not
exceed 1.42-fold. We argue that the VGG encoder preserves
the information of the pixels, more so than learning higher-
level features. Another interesting point is the considerable
change in the first layer for both encoders. We suspect this is



Table 1: The standard deviation of all predictions across the validation set.

Salient360!
AUC-J ↑ NSS ↑ CC ↑ SIM ↑ KLD ↓

VGG 0.760±0.04 1.548±0.20 0.538±0.11 0.569±0.05 0.922±0.28

ResNet 0.769±0.03 1.601±0.18 0.584±0.08 0.591±0.03 0.849±0.16

related to the 360 input images; local filters change to adapt
to the data representation. Table 2 analyses the 25 latent
representations obtained from both VGG and ResNet con-
trastive encoders. We measured the inter-maps correlation:
for a given representation Λ ∈ R512×10×20, we fix a tar-
get map Λi ∈ R10×20, and compute the average correlation
coefficient among the maps, j ∈ {1, . . . , 512}, j 6= i. For
VGG, the averageCC = 0.31 while ResNet hasCC = 0.10.
This shows that the latent representations produced by the
contrastive ResNet encoder have more variations across the
channels, thus embedding more patterns compared to the
VGG ones (see Figure 5). Furthermore, training on top of
the VGG-encoder appears to force the decoder to learn an
average saliency distribution over the training set.

Surprisingly, however, this still achieves reasonable re-
sults (KLD = 0.922;NSS = 1.548). An explanation
could relate to the statistical bias present in HM/EM fixa-
tions. Viewers have the tendency to gaze at regions near
the equator (termed the equator bias [4, 2]). In contrast,
the decoder trained on top of the ResNet-based encoder is
able to learn non-obvious saliency distribution, and fixate on
critical regions, further improving the model’s accuracy. It
can be observed that the ResNet-based model is able to cor-
relate well with the ground-truth distribution (see Figure 2,
Figure 3). To further show this, Table 3 measures the dis-
tance between an equator bias, and the models’ predictions;
the VGG-based model has a higher similarity with the equa-
tor bias (KLD = 1.867), whereas the ResNet-based model
has lower similarity (KLD = 2.507).

Finetuning the whole model. As an additional experi-
ments, we finetuned the Resnet based model end-to-end on
the saliency dataset using the Adam optimizer, this would
adapt the unsupervised weights to the specific task at hand.
The results are: (AUC-J: 0.790), (NSS: 1.616), (CC: 0.586),
(SIM: 0.607), (KLD: 0.815). This is not particularly surpris-
ing as the encoder weights are more specific to the task at
hand.

Average pooling based encoder. We replaced the atten-
tion with an average pooling on f(xt) (equivalent to equal
attention). This will induce a global attention effect, the
results are (AUC-J: 0.728), (NSS: 1.544), (CC: 0.528), (SIM:
0.558), (KLD: 0.901). This shows the importance of the lo-
cal attention specifically designed for the downstream task.

Failure scenarios. To further analyse the model’s ex-
pressive power, we have detected some outliers on the

Table 2: Statistics about the Salient360! 24 validation images
latent representations Ψx ∈ R512×10×20.

CC

VGG contrastive encoder 0.295
ResNet contrastive encoder 0.107

Salient360! validation set (i.e. the images with the highest
KLD = 1.51; the lowest NSS = 1.09). Figure 6 illustrates
two failure modes identified so far. In the top image, the
model misses the object highlighted in the yellow box, which
is salient to humans. This object, however, appears to have
been blurred in capture due to camera motion, which likely
affected the features that were usually being used to detect an
object as salient. However, this may be seen as a problem/ar-
tifact of the input data., and not a problem due to model
capacity. The second scenario appears more challenging.
The image was captured between two cabins in a train; the
model is able to detect salient regions in the front cabin, but
clearly humans localized in the viewing sphere to generate
the ground truth were saccading on people standing in the
rear cabin. The resolution of this rear cabin is small in the
ERP format. Hence, we suspect that detecting saliency at
depth is a weakness of the model. A potential solution could
be the use of multi-scale attention [5], which has been shown
to improve failure modes relating to features that need to be
detected at different spatial scales.

Model consistency. Averaging the metrics over the vali-
dation set biases the evaluation somehow, as models can fit
precisely some samples, but give poor predictions for others.
Table 1 shows the results on Salient360! validation set, with
confidence intervals. It can be seen that the ResNet-based
model has less variance across all metrics, demonstrating
the consistency of the predictor. The VGG-based model, on
the other hand, has a wider confidence interval, which is
explained by the fact that a substantial amount of the ground
truth saliency has high density in the equator.

C. Projections
There are a wide variety of well known projections from

a sphere to a two-dimensional map, and the choice depends
on the task at hand. For saliency prediction, the straightfor-
ward equi-rectangular projection of the sphere to a 2D plane



Figure 2: Qualitative results of model variants on sample images from Salient360! dataset.

introduces significant geometric distortions near the poles.
Furthermore, the spherical data representation gives more
flexibility to design new views for contrastive learning. The
main idea is to be able to reconstruct the whole sphere angles
through the different views, as shown in Figure 7. The first
projection consist of bring top-to-front by rotating the sphere
around the horizontal axis, this recovers objects originally lo-

calized on the Zenith in the support ERP image. Accordingly,
the second projection deals with the bottom-to-front.

References
[1] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 770–778,



Figure 3: Qualitative results of model variants on sample synthetic images from Sitzman dataset.

2016. 1
[2] P. Lebreton and A. Raake. Gbvs360, bms360, prosal: Extend-

ing existing saliency prediction models from 2d to omnidi-
rectional images. Signal Processing: Image Communication,
69:69–78, 2018. 3

[3] J. Pan, C. C. Ferrer, K. McGuinness, N. E. O’Connor, J. Torres,
E. Sayrol, and X. Giro-i Nieto. Salgan: Visual saliency pre-
diction with generative adversarial networks. arXiv preprint

arXiv:1701.01081, 2017. 1
[4] V. Sitzmann, A. Serrano, A. Pavel, M. Agrawala, D. Gutierrez,

B. Masia, and G. Wetzstein. Saliency in vr: How do people ex-
plore virtual environments? IEEE transactions on visualization
and computer graphics, 24(4):1633–1642, 2018. 3

[5] A. Tao, K. Sapra, and B. Catanzaro. Hierarchical multi-
scale attention for semantic segmentation. arXiv preprint
arXiv:2005.10821, 2020. 3



Figure 4: The Frobenius norm of the weights difference layer-wise, between encoders obtained at epochs 250 and 10.

Figure 5: t-SNE visualization of the embeddings on sample images from the Salient360! validation set. ResNet embeddings
are marked in red. VGG embeddings are marked in navy blue.

Table 3: The probabilistic distance between the equator bias
and the models predictions on the Salient360! validation set.

KLD ↓
VGG-based saliency model 1.867
ResNet-based saliency model 2.507

[6] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. Self-
attention generative adversarial networks. In International
conference on machine learning, pages 7354–7363. PMLR,
2019. 1



Figure 6: Failure modes of the model.

Figure 7: The different views.


