
Clustering by Maximizing Mutual Information Across Views - Supplementary
Material

Kien Do, Truyen Tran, Svetha Venkatesh
Applied Artificial Intelligence Institute (A2I2), Deakin University, Geelong, Australia

{k.do, truyen.tran, svetha.venkatesh}@deakin.edu.au

A. Appendix
A.1. Possible critics for the probability contrastive

loss

We list here several possible critics that could be used in
LPC. If we simply consider a critic f as a similarity measure
of two probabilities p and q, f could be the negative Jensen
Shannon (JS) divergence1 between p and q:

f(p, q) = −DJS(p‖q) (1)

= −1

2

(
DKL

(
p
∥∥p+ q

2

)
+DKL

(
q
∥∥p+ q

2

))
(2)

or the negative L2 distance between p and q:

f(p, q) = −‖p− q‖22 = −
C∑
c=1

(pc − qc)2 (3)

In both cases, f achieves its maximum value when p = q
and its minimum value when p and q are different one-hot
vectors.

We can also define f as the dot product of p and q as
follows:

f(p, q) = p>q =

C∑
c=1

pcqc (4)

However, the maximum value of this critic is no longer ob-
tained when p = q but when p and q are the same one-hot
vector (check Appdx. A.2 for details). It means that max-
imizing this critic encourages not only the consistency be-
tween p and q but also the confidence of p and q.

A.2. Global maxima and minima of the dot product
critic for probabilities

Proposition 1. The dot product critic f(p, q) =
∑C
c=1 pcqc

achieves its global maximum value at 1 when pc and qc are
the same one-hot vector, and its global minimum value at 0
when pc and qc are different one-hot vector.

1The JS divergence is chosen due to its symmetry. The negative sign
reflects the fact that f is a similarity measure instead of a divergence.

Proof. Since 0 ≤ pc, qc ≤ 1, we have
∑C
c=1 pcqc ≥ 0.

This minimum value is achieved when pcqc = 0 for all c ∈
{1, ..., C}. And because

∑C
c=1 pc =

∑C
c=1 qc = 1, pc and

qc must be different one-hot vectors.
In addition, we also have

∑C
c=1 pcqc ≤

∑C
c=1 pc = 1.

This maximum value is achieved when pcqc = pc or pc(qc−
1) = 0 for all c ∈ {1, ..., C}, which means pc and qc must
be the same one-hot vectors.

Since the gradient of
∑C
c=1 pcqc w.r.t. qc is propor-

tional to pc, if we fix p and only optimize q, maximizing∑C
c=1 pcqc via gradient ascent will encourage q to be one-

hot at the component k at which pk is the largest. Similarly,
minimizing

∑C
c=1 pcqc via gradient descent will encourage

q to be one-hot at the component k at which pk is the small-
est.

In case p1 = ... = pC = 1
C , all the components of q have

similar gradients. Although it does not change the relative
order between the components of q after update, it still push
q towards the saddle point

(
1
C , ...,

1
C

)
. However, chance

that models get stuck at this saddle point is tiny unless we
explicitly force it to happen (e.g., maximizing H(q)).

For better understanding of the optimization dynamics,
we visualize the surface of

∑C
c=1 pcqc with C = 2 in

Fig. 1a. log
(∑C

c=1 pcqc

)
has the same global optimal val-

ues and surface as
∑C
c=1 pcqc

A.3. Derivation of the InfoNCE lower bound

The variational lower bound of I(X;Y) can be com-
puted as follows:

I(X;Y) = Ep(x,y)
[
log

p(x, y)

p(x)p(y)

]
= Ep(x,y)

[
log

qθ(x, y)

p(x)p(y)

]
+DKL (p(x, y)‖qθ(x, y))

≥ Ep(x,y)
[
log

qθ(x, y)

p(x)p(y)

]
(5)

where qθ(x, y) is the variational approximation of p(x, y).

(a) Dot-product critic (b) Log-of-dot-product critic (c) Negative-L2-distance critic (d) Negative-JS-divergence critic

Figure 1: The surfaces of different critics on probabilities in case of 2 classes.

Following [10], we assume that qθ(x, y) belongs to the
energy-based variational family that uses a critic fθ(x, y)
and is scaled by the data density p(x)p(y):

qθ(x, y) =
p(x)p(y)efθ(x,y)∑
x,y p(x)p(y)efθ(x,y)

=
p(x)p(y)efθ(x,y)

Zθ
(6)

where Zθ =
∑
x,y p(x)p(y)efθ(x,y) = Ep(x)p(y)

[
efθ(x,y)

]
is the partition function which does not depend on x, y.

Since the optimal value of qθ(x, y) is q∗θ(x, y) = p(x, y),
we have:

p(x)p(y)ef
∗
θ (x,y)

Z∗θ
= p(x, y)

⇔f∗θ (x, y) = logZ∗θ + log
p(x, y)

p(x)p(y)
, (7)

which means the optimal value of fθ(x, y) is proportional
to log p(x,y)

p(x)p(y) .
Next, we will show that fθ is the critic in the InfoNCE

lower bound. We start by rewriting the lower bound in Eq. 5
using the formula of qθ(x) in Eq. 6 as follows:

I(X;Y) ≥ Ep(x,y)
[
log

efθ(x,y)

Zθ

]
= Ep(x,y) [fθ(x, y)]− logZθ (8)

Here, we encounter the intractable logZθ. To form a
tractable lower bound of I(X;Y), we continue replacing
logZθ with its variational upper bound:

logZθ ≤
Zθ
aθ

+ log aθ − 1 (9)

where aθ is the variational approximation of Zθ. We should
choose aθ close to Zθ so that the variance of the bound in
Eq. 9 is small. Recalling that Zθ = Ep(x)p(y)

[
efθ(x,y)

]
, we

define aθ as follows:

aθ =
1

M

M∑
i=1

efθ(xi,y) (10)

where x1, ..., xM are M samples from p(x). aθ in Eq. 10
can be seen as a stochastic estimation of Zθ with x sampled
M times more than y. Thus, Zθaθ ≈ 1 and from Eq. 9, we
have logZθ ≤ log aθ. Apply this result to Eq. 8, we have:

I(X;Y) ≥ Ep(x,y) [fθ(x, y)]− log aθ (11)

= Ep(x2:M)Ep(x1,y)

[
fθ(x1, y)− log

1

M

M∑
i=1

efθ(xi,y)

]
(12)

= Ep(x1:M)p(y|x1)

[
log

efθ(x1,y)∑M
i=1 e

fθ(xi,y)

]
+ logM

(13)

, IInfoNCE(X;Y) (14)

where Eq. 12 is obtained from Eq. 11 by using the fact that
Ep(x,y) [fθ(x, y)] = Ep(x2:M)Ep(x1,y) [fθ(x1, y)] and the
assumption that the samples x1, ..., xM and y in aθ (Eq. 10)
are drawn from p(x2:M)p(x1, y).

Combining with the result in Eq. 7, we have the optimal
critic f∗θ (x, y) in the InfoNCE lower bound is proportional
to log p(x,y)

p(x)p(y) = log p(y|x)
p(y) . Since p(y) does not depend

on x and will be cancelled by both the nominator and de-
nominator in Eq. 13, f∗θ (x, y) is, in fact, proportional to
log p(y|x).

A.4. Derivation of the scaled dot product critic in
representation learning

Recalling that in contrastive representation learning, the
critic f is defined as the scaled dot product between two
unit-normed feature vectors z̃, zi:

f(x̃, xi) = z̃>zi/τ

Interestingly, this formula of f is accordant with the for-
mula of f∗ and is proportional to log p(x̃|xi). To see why,
let’s assume that the distribution of z̃ given zi is modeled
by an isotropic Gaussian distribution with zi as the mean

vector and τI as the covariance matrix. Then, we have:

f∗ ∝ log p(x̃|xi)
≈ log p(z̃|zi)

∝ log e−
0.5
τ ‖z̃−zi‖

2
2

= −0.5

τ

(
‖z̃‖22 − 2z̃>zi + ‖zi‖22

)
= z̃>zi/τ − 1/τ

∝ z̃>zi/τ

where ‖z̃‖22 = ‖zi‖22 = 1 due to the fact that z̃ and zi are
unit-normed vectors.

A.5. Analysis of the gradient of LPC

Recalling that the probability contrastive loss LPC for
a sample x̃ with the “log-of-dot-product” critic f(p, q) =
log
(
p>q

)
is computed as follows:

LPC = − log
ef(q̃,q1)∑M
i=1 e

f(q̃,qi)

= − log
(
q̃>q1

)
+ log

M∑
i=1

q̃>qi

Because q̃ is always parametric while qi (i ∈ {1, ...,M})
can be either parametric (if LPC is implemented via the
SimCLR framework [3]) or non-parametric (if LPC is im-
plemented via the MemoryBank framework [15]), we focus
on the gradient of LPC back-propagating through q̃. In prac-
tice, q̃ is usually implemented by applying softmax to the
logit vector ũ ∈ RC :

q̃c =
exp (ũc)∑C
k=1 exp (ũk)

where q̃c denotes the c-th component of q̃. Similarly, qi,c is
the c-th component of qi.

The gradient of LPC w.r.t. ũc is given by:

∂LPC

∂ũc
= − ∂

∂ũc
log
(
q̃>q1

)
+

∂

∂ũc
log

M∑
i=1

q̃>qi (15)

The first term in Eq. 15 is equivalent to:

− ∂

∂ũc
log
(
q̃>q1

)
⇔ −1

q̃>q1

 ∂

∂ũc
(q̃cq1,c) +

∑
k 6=c

∂

∂ũc
(q̃kq1,k)


⇔ −1

q̃>q1

q̃c(1− q̃c)q1,c −∑
k 6=c

q̃cq̃kq1,k


⇔− 1∑C

k=1 q̃kq1,k

(
q̃cq1,c − q̃c

C∑
k=1

q̃kq1,k

)

⇔q̃c −
q̃cq1,c∑C
k=1 q̃kq1,k

(16)

And the second term in Eq. 15 is equivalent to:

∂

∂ũc
log

M∑
i=1

q̃>qi

⇔ 1∑M
i=1 q̃

>qi

(
M∑
i=1

∂

∂ũc

(
q̃>qi

))

⇔ 1∑M
i=1 q̃

>qi

(
M∑
i=1

(
q̃cqi,c − q̃c

C∑
k=1

q̃kqi,k

))

⇔ 1∑M
i=1

∑C
k=1 q̃kqi,k

(
M∑
i=1

q̃cqi,c − q̃c
M∑
i=1

C∑
k=1

q̃kqi,k

)

⇔
∑M
i=1 q̃cqi,c∑M

i=1

∑C
k=1 q̃kqi,k

− q̃c

Thus, we have:

∂LPC

∂ũc
=

∑M
i=1 q̃cqi,c∑M

i=1

∑C
k=1 q̃kqi,k

− q̃cq1,c∑C
k=1 q̃kq1,k

(17)

We care about the second term in Eq. 17 which is derived
from the gradient of the critic f(q̃, q1) w.r.t. ũc (the nega-
tive of the term in Eq. 16). We rewrite this gradient with
simplified notations as follows:

∂f(q, p)

∂uc
=

qcpc∑C
k=1 qkpk

− qc

where uc is the c-th logit of q. Since during training, q is
encouraged to be one-hot (see Appdx. A.2), the denomina-
tor may not be defined if we do not prevent p from being a
different one-hot vector. However, even when the denomi-
nator is defined, the update still does not happen as expected
when q is one-hot. To see why, let’s consider a simple sce-
nario in which q = [0, 1, 0] and p = [0.998, 0.001, 0.001].
Apparently, the denominator is 0.001 6= 0. By maximizing

Dataset #Train #Test #Extra #Classes Image size

CIFAR10 50,000 10,000 × 10 32×32×3

CIFAR20 50,000 10,000 × 20 32×32×3

STL10 5,000 8,000 100,000 10 96×96×3

ImageNet10 13,000 500 × 10 224×224×3

ImageNet-Dogs 19,500 750 × 15 224×224×3

ImageNet-50 64,274 2,500 × 50 224×224×3

ImageNet-100 128,545 5,000 × 100 224×224×3

ImageNet-200 256,558 10,000 × 200 224×224×3

Table 1: Details of the datasets used in this work.

Figure 2: NMI curve of CRLC on ImageNet-Dogs w.r.t.
different coefficients of LFC.

f(q, p), we want to push q toward p. Thus, we expect that
∂f
∂u1

> 0 and ∂f
∂u2

< 0. However, the gradients w.r.t. uc are
0s for all c ∈ {1, 2, 3}:

∂f

∂u1
=

0× 0.998

0.001
− 0 = 0

∂f

∂u2
=

1× 0.001

0.001
− 1 = 0

∂f

∂u3
=

0× 0.001

0.001
− 0 = 0

The reason is that q = [0, 1, 0] is a stationary point (min-
imum in this case). This means once the model has set q
to be one-hot, it tends to get stuck there and cannot escape
regardless of the value of p. This problem is known in liter-
ature as the “saturating gradient” problem. To alleviate this
problem, we propose to smooth out the values of q and p
before computing the critic f :

q = (1− γ)q + γr

p = (1− γ)p+ γr

where 0 ≤ γ ≤ 1 is the smoothing coefficient, which is
set to 0.01 if not otherwise specified; r =

(
1
C , ...,

1
C

)
is the

uniform probability vector over classes. We also regularize
the value of uc to be within [−25, 25].

A.6. Dataset description

In Table 1, we provide details of the datasets used in this
work. CIFAR20 is CIFAR100 with 100 classes replaced by
20 super-classes. STL10 is different from other datasets in
the sense that it has an auxiliary set of 100,000 unlabeled
samples of unknown classes. Similar to previous works, we
use samples from this auxiliary set and the training set to
train the “representation learning” head.

A.7. Training setups for clustering

End-to-end clustering For end-to-end clustering, we use
a SGD optimizer with a constant learning rate = 0.1, mo-
mentum = 0.9, Nesterov = False, and weight decay = 5e-4
based on the settings in [5, 6, 13]. We set the batch size to
512 and the number of epochs to 2000. In fact, on some
datasets like ImageNet10 or ImageNet-Dogs, CRLC only
needs 500 epochs to converge. The coefficients of the nega-
tive entropy and LFC (λ1 and λ2 in Eq. 11 in the main text)
are fixed at 1 and 10, respectively. Each experiment is re-
peated 3 times with random initializations.

Two-stage clustering For two-stage clustering, we use
the same settings as in [14]. Specifically, the backbone net-
work is ResNet18 for CIFAR10/20, STL10 and is ResNet50
for ImageNet50/100/200. In the first (pretraining) stage, for
CIFAR10/20 and STL10, we pretrain the backbone network
and the RL-head via SimCLR [3] for 500 epochs. The op-
timizer is SGD with an initial learning rate = 0.4 decayed
with a cosine decay schedule [9], momentum = 0.9, Nes-
terov = False, and weight decay = 1e-4. Meanwhile, for Im-
ageNet50/100/200, we directly copy the pretrained weights
of MoCo [6] to the backbone network and the RL-head.
After the pretraining stage, we find for each sample in the
training set 50 nearest neighbors based on the cosine simi-
larity measure. Positive samples for contrative learning in
the second stage are drawn uniformly from these sets of
nearest neighbors. In the second stage, for CIFAR10/20 and
STL10, we train both the backbone network and the C-head
for 200 epochs by minimizing Lcluster (Eq. 8 in the main
text) using an Adam optimizer with a constant learning rate
= 1e-4 and weight decay = 1e-4. For ImageNet50/100/200,
we freeze the backbone network and only train the C-head
for 200 epochs by minimizing Lcluster using an SGD opti-
mizer with a constant learning rate = 5.0, momentum = 0.9,
Nesterov = False, and weight decay = 0.0.

A.8. Complete end-to-end clustering results

Complete results with standard deviations on the five
standard clustering datasets are shown in Tables 2 and 3.
From Table 2, we see that for CIFAR10 using both the train-
ing and test sets does not cause much difference in perfor-
mance compared to using only the training set. For CI-

Dataset CIFAR10 CIFAR20 STL10

Metric ACC NMI ARI ACC NMI ARI ACC NMI ARI

C-head only
Train only 67.2±0.7 56.8±1.3 47.8±1.4 38.0±1.6 36.8±1.0 22.3±0.9 47.03±2.2 39.06±1.5 27.23±1.8

Train + Test 66.9±0.8 56.9±0.7 47.5±0.5 37.7±0.4 35.7±0.5 21.6±0.3 61.2±1.2 52.7±0.8 43.4±1.3

CRLC
Train only 79.4±0.3 66.7±0.6 62.3±0.4 43.4±0.8 43.1±0.5 27.7±0.3 57.6±1.6 50.8±1.5 41.9±1.2

Train + Test 79.9±0.6 67.9±0.6 63.4±0.4 42.5±0.7 41.6±0.8 26.3±0.5 81.8±0.3 72.9±0.4 68.2±0.3

Table 2: Clustering results of our proposed methods on CIFAR10, CIFAR20 and STL10 with only the training set used and
with both the training and test sets used.

Dataset ImageNet10 ImageNet-Dogs

Metric ACC NMI ARI ACC NMI ARI

C-head only 80.0±1.4 75.2±1.9 67.6±2.2 36.3±0.9 37.5±0.7 19.8±0.4

CRLC 85.4±0.3 83.1±0.5 75.9±0.4 46.1±0.6 48.4±0.6 29.7±0.4

Table 3: Clustering results of our proposed methods on ImageNet10 and ImageNet-Dogs.

FAR20, using only the training set even leads to slightly
better results. By contrast, for STL10, models trained with
both the training and test sets significantly outperform those
trained with the training set only. We believe the reason
is that for CIFAR10 and CIFAR20, the training set is big
enough to cover the data distribution in the test set while
for STL10, it does not apply (Table 1). Therefore, we think
subsequent works should use only the training set when do-
ing experiments on CIFAR10 and CIFAR20.

A.9. Additional two-stage clustering results

Table 4 compares the clustering results of “two-stage”
CRLC and SCAN on CIFAR10/20, STL10. “Two-stage”
CRLC clearly outperforms SCAN on all datasets.

A.10. Additional ablation study results

A.10.1 Contribution of the feature contrastive loss

In Fig. 2, we show the performance of CRLC on ImageNet-
Dogs w.r.t. different coefficients of LFC (λ2 in Eq. 11 in
the main text). We observe that CRLC achieves the best
clustering accuracy when λ2 = 3. However, in Table 1 in
the main text, we still report the result when λ2 = 10.

A.10.2 Nonparametric implementation of CRLC

In this section, we empirically investigate the contributions
of the number of negative samples and the momentum co-
efficient (α in Eq. 10 in the main text) to the performance
of MemoryBank-based CRLC.

Contribution of the number of negative samples From
Fig. 3a, we do not see any correlation between the num-
ber of negative samples and the clustering performance of
MemoryBank-baed CRLC despite the fact that increasing

the number of negative samples allows the RL-head and the
C-head to gain more information from data (Figs. 3b and
3c). It suggests that for clustering (and possibly other clas-
sification tasks), getting more information may not lead to
good results. Instead, we need to extract the right informa-
tion related to clusters.

Contribution of the momentum coefficient From
Fig. 4b, we see that changing the momentum value for up-
dating probability vectors stored in the memory bank does
not affects amount of information captured by the RL-head
much. By contrast, in Fig. 4c, we see that larger values
of the momentum cause the C-head to capture more infor-
mation. This is reasonable because the accumulated proba-
bility vector qn,t is usually more stochastic (contains more
information) than the probability vector q̂n of a particular
view (Eq. 10 in the main text). Larger values of the mo-
mentum also cause the model to converge slower but do not
affect the performance much (Fig. 4a).

A.11. Qualitative evaluation

In Fig. 5, we show the top correctly predicted samples
according to their confidence score for each of 5 classes
from the training set of STL10. It is clear that these samples
are representative of the cluster they belong to.

A.12. Consistency-regularization-based semi-
supervised learning methods

When some labeled data are given, the clustering prob-
lem naturally becomes semi-supervised learning (SSL).
The core idea behind recent state-of-the-art SSL methods
such as UDA [16], MixMatch [2], ReMixMatch [1], Fix-
Match [11] is consistency regularization (CR) which is
about forcing an input sample under different perturba-
tions/augmentations to have similar class predictions. In

Dataset CIFAR10 CIFAR20 STL10

Metric ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means [14] 65.9±5.7 59.8±2.0 50.9±3.7 39.5±1.9 40.2±1.1 23.9±1.1 65.8±5.1 60.4±2.5 50.6±4.1

SCAN [14] 81.8±0.3 71.2±0.4 66.5±0.4 42.2±3.0 44.1±1.0 26.7±1.3 75.5±2.0 65.4±1.2 59.0±1.6

two-stage CRLC 84.2±0.1 74.7±0.3 70.6±0.5 45.0±0.7 44.8±0.8 28.7±0.9 78.7±1.1 68.4±1.6 62.7±1.8

Table 4: Two-stage clustering results on CIFAR10/20 and STL10.

(a) NMI (b) InfoNCE w.r.t. LFC (c) InfoNCE w.r.t. LPC

Figure 3: Learning curves of MemoryBank-based CRLC on CIFAR20 w.r.t. different numbers of negative samples. The
momentum is α = 0.5. The InfoNCE w.r.t. a contrastive loss is computed by using Eq. 2 in the main text.

this sense, CR can be seen as an unnormalized version of
the probability contrastive loss without the denominator.
Different SSL methods extend CR in different ways. For
example, UDA uses strong data augmentation to generate
positive pairs. MixMatch and ReMixMatch combines CR
with MixUp [17]. However, none of the above methods
achieve consistent performance with extremely few labeled
data (Section 5.2 in the main text). By contrast, clustering
methods like CRLC perform consistently well even when
no label is available. Thus, we believe designing a method
that enjoys the strength of both fields is possible and CRLC-
semi can be one step towards that goal.

A.13. Training setups for semi-supervised learning

To train CRLC-semi, we use a SGD optimizer with an
initial learning rate = 0.1, momentum = 0.9, Nesterov =
False, and weight decay = 5e-4. Similar to [11], we ad-
just the learning rate at each epoch using a cosine decay
schedule [9] computed as follows:

lrt = lrmin + (lrinit − lrmin)×
1 + cos

(
t
T π
)

2

where lrinit = 0.1, lrmin = 0.001, lrt is the learning rate
at epoch t over T epochs in total. T is 2000 and 1000 for
CIFAR10 and CIFAR100, respectively. The number of la-
beled and unlabeled samples in each batch is 64 and 512,
respectively. InLCRLC-semi (Eq. 12 in the main text), λ1 = 1,
λ2 = 5, and λ3 = 1.

We reimplement FixMatch using sample code from

Github2 with the default settings unchanged. In this code,
the number of labeled and unlabeled data in a batch is 64
and 448, respectively. However, the number of steps in
one epoch does not depend on the batch size but is fixed
at 1024. Thus, FixMatch is trained in 1024 epochs ≈ 1 mil-
lion steps for both CIFAR10 and CIFAR100. Meanwhile,
CLRC-semi is trained in only 194,000 steps for CIFAR10
and 97,000 steps for CIFAR100.

A.14. More results on semi-supervised learning

In Table 5, we show additional semi-supervised learning
results of CRLC-semi on CIFAR10 and CIFAR100 in com-
parison with more baselines. CRLC-semi clearly outper-
forms all standard baselines like Π-model, Pseudo Labeling
or Mean Teacher. However, CRLC-semi looses its advan-
tage over holistic methods like MixMatch [2] and meth-
ods that use strong data augmentation like UDA [16] or
ReMixMatch [1] when the number of labeled data is big
enough. Currently, we are not sure whether the problem
comes from the feature contrastive loss LFC (when we have
enough labels, representation learning may act as a regu-
larization term and reduce the classification result), or from
the negative entropy term in Lcluster (causing too much reg-
ularization), or even from the probability contrastive loss
(contrasting probabilities of two related views is not suit-
able when we have enough labels). Thus, we leave the an-
swer of this question for future work. To gain more insight
about the advantages of our proposed CRLC-semi, we pro-
vide detailed comparison between this method and the best

2https://github.com/CoinCheung/fixmatch-pytorch

https://github.com/CoinCheung/fixmatch-pytorch

(a) NMI (b) InfoNCE w.r.t. LFC (c) InfoNCE w.r.t. LPC

Figure 4: Learning curves of MemoryBank-based CRLC on CIFAR20 w.r.t. different values of the momentum. The number
of negative samples is M = 4096. The InfoNCE w.r.t. a contrastive loss is computed by using Eq. 2 in the main text.

Figure 5: STL10 samples of 5 classes correctly predicted by CRLC. Samples are sorted by their confidence scores.

SSL baseline - FixMatch [11] in the next section.

Direct comparison between CRLC-semi and FixMatch
FixMatch [11] is a powerful SSL method that makes use
of pseudo-labeling [8] and strong data augmentation [4]
to generate quality pseudo-labels for training. FixMatch
has been shown to work reasonably well with only 1 la-
beled sample per class. In our experiment, we observe that
FixMatch outperforms CRLC-semi on both CIFAR10 and
CIFAR100. However, FixMatch must be trained in much
more steps than CRLC-semi to achieve good results and its
performance is very inconsistent (like other SSL baselines)
compared to that of CRLC-semi (Figs. 6, 7).

Details of the labeled samples For the purpose of com-
parison and reproducing the results in Table 5, we provide
the indices of 40 labeled CIFAR10 samples and 400 labeled
CIFAR100 samples used in our experiments in Fig. 9 and
Fig. 11, respectively. We also visualize these samples in
Fig. 8 and 10. We note that we do not cherry-pick these
samples but randomly draw them from the training set.

Dataset CIFAR10 CIFAR100

Labels 10 20 40 250 100 200 400 2500

Π-model [7] - - - 54.26±3.97 - - - 57.25±0.48

Pseudo Labeling [8] - - - 49.78±0.43 - - - 57.38±0.46

Mean Teacher [12] - - - 32.32±2.30 - - - 53.91±0.57

MixMatch [2] - - 47.54±11.50 11.05±0.86 - - 67.61±1.32 39.94±0.37

UDA [16] - - 29.05±5.93 8.82±1.08 - - 59.28±0.88 33.13±0.22

ReMixMatch [1] - - 19.10±9.64 5.44±0.05 - - 44.28±2.06 27.43±0.31

FixMatch (RA) [11] - - 13.81±3.37 5.07±0.65 - - 48.85±1.75 28.29±0.11

ReMixMatch†3 59.86±9.34 41.68±8.15 28.31±6.72 - 76.32±4.30 66.51±2.86 52.23±1.71 -

FixMatch (RA)†4 25.49±7.74 21.15±8.96 8.87±4.29 - 79.27±2.65 68.58±0.7 57.52±1.5 -

CRLC-semi 46.75±8.01 29.81±1.18 19.87±0.82 13.53±0.21 82.20±1.15 73.04±1.15 60.87±0.17 41.10±0.12

Table 5: Full classification errors on CIFAR10 and CIFAR100. Lower values are better. Results of baselines are taken from
[11]. †: Results obtained from external implementations of models.

(a) CIFAR10 (b) CIFAR100

Figure 6: Test accuracy and crossentropy curves of CRLC-semi (CRLC) and FixMatch (FM) on CIFAR10 and CIFAR100
with 1, 2, 4 labeled samples per class. It is clear that CRLC-semi performs consistently in all cases except for the case of
CIFAR10 with 1 labeled sample per class. However, even in that case, the CRLC-semi still gives consistent performance for
each run (Fig. 7). FixMatch, by contrast, is very inconsistent in its performance for each run, especially on CIFAR10.

Figure 7: Test accuracy curves of CRLC-semi (CRLC) and
FixMatch (FM) on CIFAR10 with 1 labeled samples per
class w.r.t. 3 different runs.

Figure 8: 40 labeled CIFAR10 samples organized into 4
rows where each row has 10 images corresponding to 10
classes. For 10 and 20 labeled samples, the first row and the
first two rows are considered, respectively.

[[33797 42143 20308 23202 39495 37706 17788 22128 38925 5884]

[2804 39911 6041 11188 20588 33193 16982 15878 42066 27972]

[19066 2339 24978 1098 12132 15219 14139 2358 40495 37444]

[19065 19165 16050 31194 3377 26529 22764 7989 14979 43282]]

Figure 9: Indices in the training set of the images in Fig. 8

Figure 10: 400 labeled CIFAR100 samples organized into 4 image blocks where each image block is a set of 100 images
corresponding to 100 classes. For 100 and 200 labeled samples, the first block and the first two blocks are considered,
respectively.

[[11188 12218 6223 32575 15073 31887 46913 24978 26529 14442]

[29329 38925 42143 9627 17117 26223 49586 15463 14283 21116]

[14139 9544 25304 44940 23202 49718 3328 1538 42066 19066]

[35592 39911 26534 47536 5884 28737 31867 10818 2363 24205]

[48129 14360 2339 30952 19165 16982 39711 39354 41086 10609]

[17925 6041 17788 40459 14979 11003 25059 49750 20308 38061]

[1335 13367 27767 33797 19065 17978 46845 1088 3377 24528]

[37444 13803 15977 4794 15219 39495 31626 48985 12344 20588]

[45896 35097 31194 48299 27972 40517 23900 45209 3336 33193]

[43282 37265 40495 46028 16050 8935 38158 43907 8983 24193]]

[[39404 41352 37487 21791 24545 33045 39512 35960 33548 35465]

[32244 22764 42462 11395 10836 14064 20797 15878 37129 8097]

[42221 47066 46915 1788 11672 41659 35411 42141 46765 3788]

[11894 21483 21743 16576 30846 39504 43770 26677 47042 49729]

[23392 2732 16269 22389 47738 32627 4859 49852 20985 34982]

[4885 12132 11095 29010 6592 28341 15536 38534 37706 10927]

[3388 43257 8092 44052 7783 8225 9025 25138 25540 34907]

[29427 36540 17999 18832 8423 1045 44302 37176 5845 24493]

[25850 24481 43866 42061 42445 30962 2235 42427 17239 1791]

[32694 48503 2804 26725 20441 42567 48444 37047 26901 13813]]

[[36391 42934 35048 13579 8292 45480 42748 45984 11381 46018]

[25501 35130 22658 5243 4287 32594 38519 7989 36761 4356]

[25513 28523 7341 26116 10648 16563 20562 9467 42004 35726]

[46746 21177 42454 15881 26838 24142 47376 8800 34485 33238]

[12220 1216 34677 15429 35645 34202 43344 14026 1170 34224]

[27277 1098 27 30163 48136 31554 36374 13139 21529 4708]

[21360 11965 1695 37345 3968 36877 2358 34036 45044 31733]

[45776 48496 34381 44941 8407 47812 11034 43694 47371 21209]

[13998 43513 39228 3563 44723 16640 38753 16465 38529 40484]

[26700 39133 36219 31865 49277 46387 19415 17068 26761 14239]]

[[30442 39988 32270 6709 7017 26062 47575 20284 20982 31699]

[29045 14242 36386 18365 35688 19535 39851 3473 15969 35477]

[2653 44887 37250 45939 27313 5377 7564 35108 38461 2881]

[24036 19749 16007 30737 2324 21277 38917 40713 25945 33506]

[3671 41641 16667 30119 30028 19345 15737 5637 44468 24588]

[32841 22128 37091 20991 10893 47385 38346 3399 3159 18757]

[14970 46469 4780 26897 31836 31718 15863 2906 48034 19203]

[5679 30322 39035 28835 21763 39729 28298 46213 32227 4517]

[28894 22504 19817 27575 37802 31236 5186 29915 39333 5896]

[37311 11193 32734 42035 10314 4613 34299 26479 3272 41338]]

Block 1 Block 2

Block 3 Block 4

Figure 11: Indices in the training set of the images in Fig. 10

References

[1] David Berthelot, Nicholas Carlini, Ekin D Cubuk,
Alex Kurakin, Kihyuk Sohn, Han Zhang, and Colin
Raffel. Remixmatch: Semi-supervised learning with
distribution alignment and augmentation anchoring.
arXiv preprint arXiv:1911.09785, 2019. 5, 6, 8

[2] David Berthelot, Nicholas Carlini, Ian Goodfellow,
Nicolas Papernot, Avital Oliver, and Colin A Raffel.
Mixmatch: A holistic approach to semi-supervised
learning. In Advances in Neural Information Process-
ing Systems, pages 5050–5060, 2019. 5, 6, 8

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. A simple framework for con-
trastive learning of visual representations. arXiv
preprint arXiv:2002.05709, 2020. 3, 4

[4] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and
Quoc V Le. Randaugment: Practical data aug-
mentation with no separate search. arXiv preprint
arXiv:1909.13719, 2019. 7

[5] Prasoon Goyal, Zhiting Hu, Xiaodan Liang, Chenyu
Wang, Eric P Xing, and Carnegie Mellon. Non-
parametric variational auto-encoders for hierarchical
representation learning. In ICCV, pages 5104–5112,
2017. 4

[6] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9729–9738, 2020. 4

[7] Samuli Laine and Timo Aila. Temporal ensem-
bling for semi-supervised learning. arXiv preprint
arXiv:1610.02242, 2016. 8

[8] Dong-Hyun Lee. Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural
networks. In Workshop on challenges in representa-
tion learning, ICML, volume 3, page 2, 2013. 7, 8

[9] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic
gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 4, 6

[10] Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex
Alemi, and George Tucker. On variational bounds of
mutual information. In International Conference on
Machine Learning, pages 5171–5180, 2019. 2

[11] Kihyuk Sohn, David Berthelot, Chun-Liang Li,
Zizhao Zhang, Nicholas Carlini, Ekin D Cubuk,
Alex Kurakin, Han Zhang, and Colin Raffel.
Fixmatch: Simplifying semi-supervised learning
with consistency and confidence. arXiv preprint
arXiv:2001.07685, 2020. 5, 6, 7, 8

[12] Antti Tarvainen and Harri Valpola. Mean teachers are
better role models: Weight-averaged consistency tar-
gets improve semi-supervised deep learning results. In
Advances in Neural Information Processing Systems,
pages 1195–1204, 2017. 8

[13] Yonglong Tian, Dilip Krishnan, and Phillip Isola.
Contrastive multiview coding. arXiv preprint
arXiv:1906.05849, 2019. 4

[14] Wouter Van Gansbeke, Simon Vandenhende, Stama-
tios Georgoulis, Marc Proesmans, and Luc Van Gool.
Scan: Learning to classify images without labels.
In European Conference on Computer Vision, pages
268–285. Springer, 2020. 4, 6

[15] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua
Lin. Unsupervised feature learning via non-parametric
instance discrimination. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 3733–3742, 2018. 3

[16] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang
Luong, and Quoc V Le. Unsupervised data augmen-
tation for consistency training. 2019. 5, 6, 8

[17] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin,
and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412,
2017. 6

