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This document provides additional details, analysis, and
experimental results to support the main submission. We
begin by providing additional discussion on the related
works in Section 1. Next, we discuss the detailed exper-
imental setup and implementation of the methods in Sec-
tion 2. Finally, we provide additional attack and defense
experiments, as well as sensitivity analysis of the proposed
algorithm in Section 3.

1. Related Methods

In this section, we provide an additional detailed discus-
sion on other related methods [12, 2]. LIRA’s algorithm is
based on alternating updates between the two functions f
and T , which has crucial differences to these related adver-
sarial and backdoor approaches.

The clean-label backdoor work of [12] assumes a differ-
ent threat model than LIRA and WaNet. Specifically, [12]
focuses on poisoning the training data, where the classifier
is trained by the user. Furthermore, [12] uses GAN to in-
terpolate an image toward the target class’s images, but still
manually design some less visible patch-based trigger that
is superimposed on the perturbed images. This is because
their objective is to make a triggered image look natural
while having the label consistent with its content. How-
ever, to achieve higher success rates, the perturbed images
must be interpolated very far away from the original image
and closer to the target images. This makes the interpolated
images visually unnatural.

The work in [2] proposes an adversarial framework,
DeepConfuse, to learn a function to generate noise-
perturbed images. The goal of DeepConfuse is to prevent
the released data from being illegally used to train a model
without the data owner’s permission. For such a reason,
their objective is to ensure that training any classifier on
the released, noise-perturbed data will fail; i.e., the clas-
sifier’s accuracy will be very low (compared to the classi-
fier trained on clean data). This is very different from our

objective, where we aim to inject a backdoor while preserv-
ing the classifier’s performance on the clean data. As the
authors indicated in the paper of DeepConfuse, the back-
door attack is a different and more difficult adversarial at-
tack than DeepConfuse.

2. Detailed Experimental Setup
2.1. Datasets

As we described in the main paper, we use four datasets,
MNIST, CIFAR10, GTSRB, and T-ImageNet, to evaluate
our method. Note that MNIST, CIFAR10, and GTSRB have
been widely used in the literature of backdoor attacks on
DNN. On the other hand, the use of a more complex dataset,
T-ImageNet, enables better evaluation for multiple-target
backdoor attacks such as all-to-all, thanks to the diversity
of images in T-ImageNet and its large number of classes.

• MNIST [6] is a subset of the larger dataset available from
the National Institute of Technology. This dataset (found
here1) consists of 70,000 grayscale, 28 × 28 images, di-
vided into a training set of 60,000 images and a test set
of 10,000 images. We applied random cropping and ran-
dom rotation as data augmentation for the training pro-
cess. During the evaluation stage, no augmentation is ap-
plied.

• CIFAR-10 is first introduced by [5]. It is a labeled subset
of the 80-millions-tiny-images dataset, collected by Alex
Krizhevsky, Vinod Nair, and Geoffrey Hinton, consists of
60,000 color images at the resolution of 32 × 32, out of
which 10,000 images are randomly selected as the query
set, and the remaining images used as the retrieval set.
The data set is public2.

• GTSRB (German Traffic Sign Recognition Bench-
mark [10]) is used as an official dataset for the challenge
1http://yann.lecun.com/exdb/mnist
2https://www.cs.toronto.edu/ ˜kriz/cifar.html



Layer Filters Filter Size Stride Padding Activation
Conv2D 16 3× 3 3 1 BatchNorm2D+ReLU

MaxPool2d - 2× 2 2 0 -
Conv2D 64 3× 3 2 1 BatchNorm2D+ReLU

MaxPool2d - 2× 2 2 0 -
ConvTranspose2D 128 3× 3 2 - BatchNorm2D+ReLU
ConvTranspose2D 64 5× 5 3 1 BatchNorm2D+ReLU
ConvTranspose2D 1 2× 2 2 1 BatchNorm2D+Tanh

Table 1: Autoencoder-based generator network used in this paper.

MNIST CIFAR10 GTSRB T-ImageNet
OTHERS

Optimizer SGD SGD SGD SGD
Batch Size 128 128 128 128

Learning Rate 0.01 0.01 0.01 0.01
Learning Rate Schedule 100,200,300,400 100,200,300,400 100,200,300,400 100,200,300,400

Learning Rate Decay 0.1 0.1 0.1 0.1
Training Epochs 1000 epochs 1000 epochs 1000 epochs 1000 epochs

LIRA Only
ε 0.005 0.005 0.005 0.005
α 0.5 0.5 0.5 0.5
β 0.5 0.5 0.5 0.5
k 1 epoch 1 epoch 1 epoch 1 epoch
m 50 epochs 50 epochs 50 epochs 50 epochs

T ’s Optimizer SGD SGD SGD SGD
T ’s Learning Rate 0.001 0.001 0.001 0.001
Clean Accuracy 0.99 0.94 0.99 0.57

Table 2: Experiment setup and parameters for the datasets used in this paper.

held at the International Joint Conference on Neural Net-
work (IJCNN) 2011. GTSRB3 consists of 60,000 images,
divided in 43 classes, with resolutions varying from 32 ×
32 to 250 × 250. The training set contains 39,209 images,
while the test set has 12,630. In our experiments, GTSRB
input images are all resized into 32 × 32 pixels, then ap-
plied random crop and random rotation in training. In the
evaluation stage, no augmentation is used.

• Tiny-ImageNet (T-ImageNet) is a smaller subset of the
large-scale ImageNet dataset [1] and is introduced in [14].
This dataset consists of 200 images classes. The train-
ing set has 500 images per class, resulting in 100,000 im-
ages, while the test set has 50 images per class,resulting in
10,000 images. T-ImageNet input images are all resized
into 64 × 64 resolution. Random crop and random rota-
tion are applied in the training stage. No augmentation is
used in the evaluation stage.

2.2. Noise Generator Models

For MNIST, we use a self-defined autoencoder, which
is detailed in Table 1. For the other datasets, we employ

3http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset

the UNet architecture [9]. We observe only a slight perfor-
mance difference between the simpler autoencoder and the
complex UNet on these datasets.

2.3. Training Hyperparameters

Table 2 provides additional details to Section 5.1 in the
main paper.

2.4. Classification Models

In this work, we use a simple CNN classifier, which is
previously used in WaNet [8], for MNIST. For convenience,
we include the detailed architecture in Table 3. For CI-
FAR10 and GTSRB datasets, we use PreActResnet18 [4].
For T-ImageNet, we use Resnet18 [4].

Layer Filters Filter Size Stride Padding Activation
Conv2D 32 3× 3 2 1 ReLU
Conv2D 64 3× 3 2 0 ReLU
Conv2D 64 3× 3 2 0 ReLU
Linear 512 - - - ReLU

Conv2D 10 - - - Softmax

Table 3: CNN model architecture for MNIST.
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Figure 1: All-to-all attacks against STRIP defense.
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Figure 2: All-to-one (top row) and all-to-all (bottom row) attacks against fine-pruning defense experiments.

3. Additional Results
3.1. Defense Experiments

3.1.1 STRIP

Figure 1 presents the all-to-all results against STRIP [3]
defense experiments, which demonstrates that LIRA has a
very high degree of stealthiness against STRIP.

3.1.2 Neural Analysis Defense: Fine-pruning

Fine-pruning [7] focuses on neuron analyses. Given a spe-
cific layer in the model, it analyzes the neuron responses on
a set of clean images and detects the dormant neurons, as-
suming they are more likely to tie to the backdoor. These
neurons are then gradually pruned to mitigate the backdoor.
We tested Fine-Pruning on our models and plotting the net-
work accuracy, either clean or attack, with respect to the
number of neurons pruned in Figure 2. On all datasets, at no
point does the backdoor accuracy drop considerably higher
than the clean accuracy, making backdoor mitigation with-
out destroying the classifier impossible.

3.1.3 Neural Cleanse

Figure 3 presents the all-to-all results against Neural
Cleanse [13] defense experiments, which shows superior
performance than WaNet.
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Figure 3: All-to-all attacks against Neural Cleanse defense.
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Figure 4: Defense experiments against Spectral Signature. Top row shows all-to-one experiments. Bottom row shows all-to-
all experiments. The correlations of the clean and backdoor samples with the top singular vector of the covariance matrix in
the feature space are not separable.

3.1.4 Latent Space Defense: Spectral Signature

The authors of [11] proposed a defense method based on
“spectral signature” of backdoor images. The “spectral sig-
nature” is the correlation w.r.t the clean data’s top singular
value of the covariance matrix of the latent features of the
clean data. Similar to WaNet, this defense configuration
does not match our threat model. But we find it useful to
verify if our backdoor data have the spectral signature. Fol-
lowing the same experiments in [11], we first select 5,000
clean samples and 500 backdoor samples for each dataset.
Then we plot the histograms of the correlations between
these samples’ learned representations and their covariance
matrix’s top right singular vectors, as shown in Figure 4. It
can be seen that the histograms of the two populations are
completely inseparable. Consequently, the backdoor train-
ing samples could not be removed from the training dataset
using this “spectral signature” method.

3.2. Sensitivity Analysis

In this section, we conduct the sensitivity analysis of
LIRA. Figure 5 shows the effect of different the mixing pa-
rameters α & β (Top) and values of the perturbed noise ε
(Bottom) on the attack performance of the classifier.

3.2.1 Sensitivity of α and β

We perform experiments on the mixing parameters where
α + β = 1, as shown in Figure 5 (Top). Similar to our
discussion in the main paper, LIRA is robust against the
variations in these two parameters, which can effectively
achieve the near-optimal clean and attack performances in
general. We use 0.5 for both α and β in our experiments.

0.2 0.4 0.6 0.8
α, β=1−α

0.95

0.96

0.97

0.98

0.99

1.00
Ac

cu
ra
cy

clean
backdoor

Figure 5: Accuracy under different values of mixing param-
eter α (we set β = 1− α) and the perturbation noise ε.

3.2.2 Sensitivity of ε

Figure 5 (Bottom) shows the effect of the perturbation pa-
rameter ε. In general, a larger value of ε makes it easier for
the algorithm to learn the optimal attack. However, as can
be seen, even at a very small noise of 0.002, we still achieve
a nearly-optimal backdoor attack.



Additionally, we can see the different backdoor images
for different values of ε in Figure 6. For low-resolution
images, we can observe that a smaller ε than 0.01 is ade-
quate, while for larger-resolution inputs, even the perturbed
noise of 0.1 still renders visually indifferent backdoor im-
ages. This experiment suggests that a value of 0.005 can
be used in most cases. In fact, this is the value we use to
evaluate LIRA in this paper.

3.3. Visual Inspection Experiments

Figure 7 presents additional visual comparisons be-
tween different methods. As can be observed, previous
perturbation-based attacks (Patched, Blended, SIG, and Re-
Fool) can be completely mitigated under human inspec-
tion because of their apparent visual triggers. While the
warping-based WaNet is more difficult to be detected than
the previous perturbation-based attacks, we still find a con-
siderable amount of “difficult” cases where WaNet’s attacks
can fail under human inspection, as quantitatively demon-
strated in the human inspection tests in Table 1 of the main
paper. For example, in Figure 7, the edges of the rhombus
or triangle traffic sign are not visually straight, or the circle
sign is not round. LIRA’s attacks, on the other hand, are
extremely difficult to be detected because of its stealthy in-
finitesimal noise pattern, which is blended perfectly into the
contents of the images.

In Figure 8, we provide clean and backdoor images, as
well as the corresponding amplified residual, for randomly
selected high-resolution images (larger than 196×196)
from the GTSRB datasets. LIRA’s backdoor images have
indistinguishable visual differences from the clean images.

(a) MNIST attack on resolution 32 × 32

(b) CIFAR10 attack on resolution 32 × 32

(c) GTSRB attack on resolution 32 × 32

(d) GTSRB attack on resolution 64 × 64

(e) GTSRB attack on resolution 128 × 128

Figure 6: LIRA with different perturbed noises selected
from ε ∈ {0, 0.001, 0.005, 0.01, 0.05, 0.1}. The top images
are clean.



Figure 7: Backdoor images created from different backdoor methods. In WaNet, edges from common shapes such as a circle,
rhombus or triangle are deformed (e.g. circle is not entirely round, or edges from rhombus or rectangles are not straight),
thus the backdoor can be detected with closer inspection.



(a) Top: Original. Middle: LIRA’s backdoor images. Bottom: Amplified residual.

(b) Top: Original. Middle: LIRA’s backdoor images. Bottom: Amplified residual.

Figure 8: Randomly selected high-resolution (higher than 196×196) clean images and backdoor images (generated by LIRA)
in the GTSRB dataset. The perturbed noise ε is 0.01.
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