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A. Discussion of EM-like training algorithm
The reason why EM-like training is necessary is that the

problem is formulated as a bi-level optimization problem,
direct joint training to solve this problem is harmful to gen-
eralization ability of LBBA. And EM-like training can keep

that of LBBA. Here we state why formulating WSOD prob-
lem as bi-level optimization.

In particular, E-step is used to update latent variable b̂,

b̂ = argmax
blatent

logP (y|blatent)− L(blatent, f(I,P; θf )). (1)

For WSOD with box regression, y is image class labels, L
is defined as box regression loss (e.g., smooth L1 loss [4]
for bounding box regression), b̂ means latent bounding box
variables, and P (y|blatent) is probability of y with given
blatent in WSOD training. And f(I,P; θf ) is bounding box
output from WSOD network f with corresponding param-
eters θf . We mainly discuss L in next paragraphs. Then,
M-step is deployed to update the model parameters θf .

θf = argmin
θf

L(b̂, f(I,P; θf )), (2)

where L is a combination of weakly supervised object de-
tection loss Lwsod and bounding box regression loss Lbbr.

As mentioned above, previous methods utilize precom-
puted proposals as well as pseudo ground-truth mining in
E-step, and then update box regression branch of WSOD
network in M-step. However, optimizing P (y|blatent) in E-
step with only image-level supervision to imporve quality
of b̂ is difficult. Besides, when optimizing L in E-step,
precomputed proposals are designed for generating region
proposals for box regression of object detection, which are
not suitable for final object localization. To tackle this prob-
lem, we want to use extra well-annotated data to supervise a
learnable model, make it generate more precise b̂ in E-step.
Therefore, we aim to introduce a class-agnostic Learnable
Bounding Box Adjuster (LBBA) g(Iaux,Paux; θg) trained on
a full-annotated auxiliary dataset Xaux. To this end, we sug-
gest to utilize LBBA g to generate latent variable b̂

aux
on

Xaux.

b̂aux = g(Iaux,Paux; θg)

θg = argmin
θg

Lbba({baux}, g(Iaux,Paux; θg))
(3)



After introducing LBBA g into WSOD, our WSOD prob-
lem can be transferred into a bi-level optimization prob-
lem, here we state how to build bi-level optimization.
Lower subproblem. During M-step, WSOD network
f is supervised by both image class label y as well as
latent variable b̂

aux
, which is output of LBBA network

g(Iaux,Paux; θg). Therefore we update parameters of WSOD
network θf aux by minimizing Lwsod + Lbbr, which is shown
as Eq. 4. And Eq. 4 also stands for the lower subproblem of
bi-level optimization.

θf aux = argmin
θfaux

(Lwsod+Lbbr)(b̂
aux

, f aux(Iaux,Paux; θf aux)) (4)

Upper subproblem. Thus, taking above equations into
consideration, WSOD parameters θf aux can be seen as a
function of LBBA parameters θg (i.e., θf aux(θg)). Thus, in
E-step the upper subproblem on θg is defined for optimizing
Lbba on the WSOD network f aux(Iaux,Paux; θf aux(θg)),

θg= argmin
θg

Lbba({baux}, f aux(Iaux,Paux; θf aux(θg))) (5)

where g generates adjusted bounding box regression for
given proposals from WSOD f aux. Thus upper subproblem
has transferred into a fully-supervised setting. Furthermore,
to ease the training difficulty of the upper subproblem and
improve the precision of b̂

aux
, we modify the upper subprob-

lem by requiring LBBA accurately predicts the ground-truth
boxes, resulting in the following bi-level optimization for-
mulation.

min
θg

Lbba({baux}, g(Iaux, f aux(Iaux,Paux; θf aux); θg))

s.t.θf= argmin
θf

Lwsod+Lbbr(b̂
aux

, f aux(Iaux,Paux; θf aux)).
(6)

B. Datasets

To illustrate the effectiveness of our method, we con-
duct experiments on various representative datasets: PAS-
CAL VOC 2007 and 2012 datasets, MS-COCO dataset, and
ILSVRC 2013 detection dataset.

B.1. Auxiliary Datasets

COCO-60 Dataset MS-COCO 2017 [10] is a large-scale
object detection dataset. Note that MS-COCO dataset in-
cludes 80 different object classes. To eliminate semantic
overlap and show the generalization ability of our method,
we construct a subset of MS-COCO by excluding PASCAL
VOC classes instance annotations and call it COCO-60. As
such, COCO-60 dataset contains ∼98K training images and
∼4K validation images, respectively. Construction details
are shown as Appendix B.4.

ILSVRC-Source Dataset To prove that our method can
be generalized to more categories, we conduct extended ex-
periments on the ILSVRC2013 detection dataset. ILSVRC
detection dataset contains 200 categories, which is much
more than that for PASCAL VOC or COCO-20. To con-
struct the corresponding auxiliary dataset, we select the first
100 classes sorted in alphabetic order as the source classes
in the auxiliary dataset. Construction details are shown as
Appendix B.5.

B.2. Target Datasets

PASCAL VOC Dataset PASCAL VOC 2007 and 2012
datasets contain 9,963 images and 22,531 images collected
from 20 object classes, respectively. For fair comparison,
we use trainval set for training WSOD networks and report
evaluation results on test set. During the training process,
only image-level labels are used as supervision.

COCO-20 Dataset To verify the generalization ability of
our LBBA, we construct another target dataset from MS-
COCO dataset namely COCO-20 dataset. Note that the
COCO-20 dataset has the same 20 classes as PASCAL VOC
dataset, but containing more complicated scenarios in im-
ages. Construction details are shown as Appendix B.5.

ILSVRC-Target Dataset ILSVRC detection dataset con-
tains 200 categories. To construct the target dataset and
avoid semantic overlaps with the corresponding auxiliary
dataset, we select the last 100 classes sorted in alphabetic
order as target classes in our weakly supervised object de-
tection dataset. Construction details are shown as Ap-
pendix B.5.

B.3. Auxiliary-Target Pairs

From these datasets, we divide them into four dataset-
pair settings, an auxiliary dataset corresponding to a target
dataset, to deploy experiments. Table 6 give the dataset-pair
settings. Setting 1 and Setting 2 are mentioned in section
4 of main paper and we will introduce details of setting 3
and setting 4 in Appendix B.4 and Appendix B.5. Then
we will state more experimental results in Appendix F and
Appendix G.

B.4. Construction of COCO-60/COCO-20

To simplify the statement, we define COCO-60 classes
as the categories in original COCO classes but excluding
PASCAL VOC classes. Then we state how to construct
COCO-60 dataset and COCO-20 dataset.

To construct COCO-60 dataset, we first keep annotations
of COCO-60 classes in COCO 2017 train set, then we se-
lect images which contain at least one instance of COCO-60



Table 1. Single model detection per-class results on PASCAL VOC 2007, where + means the results with multi-scale testing, ∗ means
joint training of WSOD models on the auxiliary dataset and weakly-annotated dataset.

Methods Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV AP
WSDDN [2] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8
OICR+ [18] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2
PCL+ [17] 54.4 69.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0 43.5
Yang et al.+ [21] 57.6 70.8 50.7 28.3 27.2 72.5 69.1 65.0 26.9 64.5 47.4 47.7 53.5 66.9 13.7 29.3 56.0 54.9 63.4 65.2 51.5
C-MIDN+ [20] 53.3 71.5 49.8 26.1 20.3 70.3 69.9 68.3 28.7 65.3 45.1 64.6 58.0 71.2 20.0 27.5 54.9 54.9 69.4 63.5 52.6
Arun et al. [1] 66.7 69.5 52.8 31.4 24.7 74.5 74.1 67.3 14.6 53.0 46.1 52.9 69.9 70.8 18.5 28.4 54.6 60.7 67.1 60.4 52.9
WSOD2+ [23] 65.1 64.8 57.2 39.2 24.3 69.8 66.2 61.0 29.8 64.6 42.5 60.1 71.2 70.7 21.9 28.1 58.6 59.7 52.2 64.8 53.6
MIST-Full [12] 68.8 77.7 57.0 27.7 28.9 69.1 74.5 67.0 32.1 73.2 48.1 45.2 54.4 73.7 35.0 29.3 64.1 53.8 65.3 65.2 54.9
MSD-Ens+ [9] 70.5 69.2 53.3 43.7 25.4 68.9 68.7 56.9 18.4 64.2 15.3 72.0 74.4 65.2 15.4 25.1 53.6 54.4 45.6 61.4 51.1
OICR+UBBR [7] 59.7 44.8 54.0 36.1 29.3 72.1 67.4 70.7 23.5 63.8 31.5 61.5 63.7 61.9 37.9 15.4 55.1 57.4 69.9 63.6 52.0
Ours 65.4 73.7 53.1 44.8 27.3 73.1 73.7 72.2 29.8 69.2 51.1 68.7 56.4 71.8 20.3 27.1 61.4 60.3 65.5 65.9 56.5
Ours+ 70.3 72.3 48.7 38.7 30.4 74.3 76.6 69.1 33.4 68.2 50.5 67.0 49.0 73.6 24.5 27.4 63.1 58.9 66.0 69.2 56.6
Upper bounds:
Faster R-CNN [11] 70.0 80.6 70.1 57.3 49.9 78.2 80.4 82.0 52.2 75.3 67.2 80.3 79.8 75.0 76.3 39.1 68.3 67.3 81.1 67.6 69.9
Zhong et al. (R50-C4)∗ [24] 64.4 45.0 62.1 42.8 42.4 73.1 73.2 76.0 28.2 78.6 28.5 75.1 74.6 67.7 57.5 11.6 65.6 55.4 72.2 61.3 57.8
Zhong et al. (R50-C4)+∗ [24] 64.8 50.7 65.5 45.3 46.4 75.7 74.0 80.1 31.3 77.0 26.2 79.3 74.8 66.5 57.9 11.5 68.2 59.0 74.7 65.5 59.7

Table 2. Single model detection results on PASCAL VOC 2012, where + means the results with multi-scale testing, ∗ means joint training
of WSOD models on the auxiliary dataset and weakly-annotated dataset.

Methods Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV AP
OICR+ 67.7 61.2 41.5 25.6 22.2 54.6 49.7 25.4 19.9 47.0 18.1 26.0 38.9 67.7 2.0 22.6 41.1 34.3 37.9 55.3 37.9
PCL+ [17] 58.2 66.0 41.8 24.8 27.2 55.7 55.2 28.5 16.6 51.0 17.5 28.6 49.7 70.5 7.1 25.7 47.5 36.6 44.1 59.2 40.6
Yang et al.+ 64.7 66.3 46.8 28.5 28.4 59.8 58.6 70.9 13.8 55.0 15.7 60.5 63.9 69.2 8.7 23.8 44.7 52.7 41.5 62.6 46.8
WSOD2+ [23] - - - - - - - - - - - - - - - - - - - - 47.2
Arun et al. [1] - - - - - - - - - - - - - - - - - - - - 48.4
C-MIDN+ [20] 72.9 68.9 53.9 25.3 29.7 60.9 56.0 78.3 23.0 57.8 25.7 73.0 63.5 73.7 13.1 28.7 51.5 35.0 56.1 57.5 50.2
MIST (Full)+ [12] 78.3 73.9 56.5 30.4 37.4 64.2 59.3 60.3 26.6 66.8 25.0 55.0 61.8 79.3 14.5 30.3 61.5 40.7 56.4 63.5 52.1
Ours 77.0 71.0 62.0 40.0 37.5 67.4 62.5 68.3 23.6 71.4 25.6 78.4 71.9 74.3 6.7 29.2 62.8 50.6 47.8 62.1 54.5
Ours+ 78.6 71.5 62.7 41.3 38.6 68.8 64.1 71.0 23.2 70.5 24.2 79.1 74.1 75.3 6.5 29.7 63.4 51.8 50.2 63.9 55.4
Upper bounds:
Faster R-CNN [11] 82.3 76.4 71.0 48.4 45.2 72.1 72.3 87.3 42.2 73.7 50.0 86.8 78.7 78.4 77.4 34.5 70.1 57.1 77.1 58.9 67.0

classes in COCO 2017 train set to construct our COCO-
60 train set. Next we keep the same steps to build up our
COCO-60 val set.

Besides, we also follow Zhong et al. [24] to define a
COCO-60-clean dataset. Particularly, we select images
which only contain instances of COCO-60 classes in
COCO 2017 train set to construct COCO-60-clean train
set, and obtain only 21987 training images. Compared to
COCO-60 dataset, COCO-60-clean dataset does not exist
objects of VOC classes in the background of images, such
that this dataset is cleaner than our COCO-60 dataset and
easier to learn. We will discuss the difference between
our method and Zhong et al. [24] based on COCO-60 and
COCO-60-clean datasets.

As for COCO-20 dataset, we select images which only
contain instances of 20 PASCAL VOC classes in COCO
2017 train set to construct our COCO-20 train set. Next
we keep annotations of 20 PASCAL VOC classes in COCO
2017 val set, and then select images which contain at least
one instance of 20 PASCAL VOC classes in COCO 2017
val set to construct our COCO-20 val set.

B.5. Construction of ILSVRC-Source/Target

The original ILSVRC dataset contains a training set and
a validation set. Firstly, We split the validation set into val1
validation set and val2 validation set. Then we state how
to construct ILSVRC-Source dataset and ILSVRC-Target

dataset.
To construct ILSVRC-Source training set, we keep im-

ages of the first 100 categories sorted in alphabetic order
from val1 and sample 1000 images per category in the same
100 categories from ILSVRC training set as data augmen-
tation.

To construct ILSVRC-Target training set, we keep im-
ages of the latter 100 categories sorted in alphabetic order
from val1 and sample a maximum of 1000 images per cat-
egory in latter categories from ILSVRC training set to aug-
ment it,while keeping only image-level labels. And to con-
struct ILSVRC-Target test set, we keep images of the same
100 categories from val2.

C. Implementation Details

C.1. Overall Implementation Details

For LBBAs, we apply Faster R-CNN [11] with backbone
of ResNet-50 [5] and we adopt class-agnostic bounding box
adjusters to eliminate potential semantic information leak
in bounding box refinement. For WSOD network, we ap-
ply OICR [18] with a backbone of VGG-16 [16] and in-
troduce a class-agnostic bounding box regression branch.
Following the settings of [2, 18, 17, 21, 12, 1, 24], we ini-
tialize backbone models of two networks with ImageNet [3]
pre-trained weights while other layers are randomly initial-
ized. As suggested in [12, 21, 17, 18, 23], we use MCG



Table 3. Single model correct localization (CorLoc) results on PASCAL VOC 2007, where + means the results with multi-scale testing, ∗

means joint training of WSOD models on the auxiliary dataset and weakly-annotated dataset.
Methods Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV CorLoc
WSDDN [2] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5
OICR+ 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6
PCL+ [17] 79.6 85.5 62.2 47.9 37.0 83.8 83.4 43.0 38.3 80.1 50.6 30.9 57.8 90.8 27.0 58.2 75.3 68.5 75.7 78.9 62.7
Li+ [8] 85.0 83.9 58.9 59.6 43.1 79.7 85.2 77.9 31.3 78.1 50.6 75.6 76.2 88.4 49.7 56.4 73.2 62.6 77.2 79.9 68.6
C-MIL+ [19] - - - - - - - - - - - - - - - - - - - - 65.0
Yang et al.+ 80.0 83.9 74.2 53.2 48.5 82.7 86.2 69.5 39.3 82.9 53.6 61.4 72.4 91.2 22.4 57.5 83.5 64.8 75.7 77.1 68.0
WSOD2+ [23] 87.1 80.0 74.8 60.1 36.6 79.2 83.8 70.6 43.5 88.4 46.0 74.7 87.4 90.8 44.2 52.4 81.4 61.8 67.7 79.9 69.5
Arun et al.[1] 88.6 86.3 71.8 53.4 51.2 87.6 89.0 65.3 33.2 86.6 58.8 65.9 87.7 93.3 30.9 58.9 83.4 67.8 78.7 80.2 70.9
MIST (Full)+ [12] 87.5 82.4 76.0 58.0 44.7 82.2 87.5 71.2 49.1 81.5 51.7 53.3 71.4 92.8 38.2 52.8 79.4 61.0 78.3 76.0 68.8
WSLAT-Ens [13] 78.6 63.4 66.4 56.4 19.7 82.3 74.8 69.1 22.5 72.3 31.0 63.0 74.9 78.4 48.6 29.4 64.6 36.2 75.9 69.5 58.8
MSD-Ens+ [9] 89.2 75.7 75.1 66.5 58.8 78.2 88.9 66.9 28.2 86.3 29.7 83.5 83.3 92.8 23.7 40.3 85.6 48.9 70.3 68.1 66.8
OICR+UBBR [7] 47.9 18.9 63.1 39.7 10.2 62.3 69.3 61.0 27.0 79.0 24.5 67.9 79.1 49.7 28.6 12.8 79.4 40.6 61.6 28.4 47.6
Ours 89.6 82.0 73.6 55.3 48.9 86.3 87.3 83.1 45.3 87.7 48.3 82.3 80.6 90.8 36.3 52.0 88.7 66.1 81.7 80.3 72.3
Ours+ 89.2 82.0 74.2 53.2 51.2 84.8 87.5 83.7 46.2 87.0 48.3 84.7 79.9 92.4 40.3 47.6 88.7 65.6 81.0 81.7 72.5
Upper bounds:
Faster R-CNN [11] 99.6 96.1 99.1 95.7 91.6 94.9 94.7 98.3 78.7 98.6 85.6 98.4 98.3 98.8 96.6 90.1 99.0 80.1 99.6 93.2 94.3
Zhong et al. (R50-C4)∗ [24] 86.7 62.4 87.1 70.2 66.4 85.3 87.6 88.1 42.3 94.5 32.3 87.7 91.2 88.8 71.2 20.5 93.8 51.6 87.5 76.7 73.6
Zhong et al. (R50-C4)+∗ [24] 87.5 64.7 87.4 69.7 67.9 86.3 88.8 88.1 44.4 93.8 31.9 89.1 92.9 86.3 71.5 22.7 94.8 56.5 88.2 76.3 74.4

Table 4. Single model correct localization (CorLoc) results on PASCAL VOC 2012, where + means the results with multi-scale testing, ∗

means joint training of WSOD models on the auxiliary dataset and weakly-annotated dataset.
Methods Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV CorLoc
OICR+ [18] - - - - - - - - - - - - - - - - - - - - 62.1
PCL+ [17] 77.2 83.0 62.1 55.0 49.3 83.0 75.8 37.7 43.2 81.6 46.8 42.9 73.3 90.3 21.4 56.7 84.4 55.0 62.9 82.5 63.2
Shen [15] - - - - - - - - - - - - - - - - - - - - 63.5
Li+ [8] - - - - - - - - - - - - - - - - - - - - 67.9
C-MIL+ [19] - - - - - - - - - - - - - - - - - - - - 67.4
Yang et al.+ [21] 82.4 83.7 72.4 57.9 52.9 86.5 78.2 78.6 40.1 86.4 37.9 67.9 87.6 90.5 25.6 53.9 85.0 71.9 66.2 84.7 69.5
Arun et al.[1] - - - - - - - - - - - - - - - - - - - - 69.5
WSOD2+ [23] - - - - - - - - - - - - - - - - - - - - 71.9
MIST (Full)+ [12] 91.7 85.6 71.7 56.6 55.6 88.6 77.3 63.4 53.6 90.0 51.6 62.6 79.3 94.2 32.7 58.8 90.5 57.7 70.9 85.7 70.9
Ours 91.9 87.4 81.9 66.7 58.5 91.2 79.9 67.3 50.0 91.9 49.6 80.3 89.6 91.8 15.6 58.8 88.7 67.1 70.2 85.0 73.2
Ours+ 91.9 87.2 81.0 66.9 61.3 90.7 81.2 66.8 51.2 91.9 50.4 81.0 90.5 91.4 16.1 58.5 89.9 67.8 70.0 86.7 73.7

boxes as precomputed proposals for COCO-60 and use Se-
lective Search boxes as precomputed proposals for PAS-
CAL VOC. During training, both two networks are opti-
mized by stochastic gradient descent (SGD) with the batch
size of 1 and initialized learning rate of 0.001. In each stage,
LBBA is trained with 4 epochs, and the learning rate is de-
cayed by 0.1 after 3 epochs. Analogously, WSOD network
is trained within 20 epochs and learning rate is decayed by
0.1 after 10 epochs. All programs are implemented by Py-
Torch toolkit, and all experiments are conducted on a single
NVIDIA RTX 2080Ti GPU.

For the multi-label image classifier, we adopt the ADD-
GCN [22], which builds a Dynamic Graph Convolutional
Network (D-GCN) to model the relation of content-aware
category representations generated by a Semantic Atten-
tion Module(SAM). During training, the ADD-GCN is op-
timized by SGD with batch size of 16. The learning rate
is initially set to 0.05 for training 40 epoch and decayed by
0.1 to train the latter 10 epoch. The best threshold τ is set to
-3.0. By the way, the setting of the τ is based on the imple-
mentation of multi-label image classifier. Too high or too
low will be detrimental to the final result, and we will give
the results and analysis in the next section.

All the source code and pre-trained models will be made
publicly available.

C.2. Structure of LBBA

Here we briefly introduce the structure of LBBA. In our
solution, we adopt Faster R-CNN [11] with backbone of
ResNet-50 [5] as our LBBA. And LBBA is designed to be
a class-agnostic bounding box regressor to eliminate po-
tential semantic information leak in bounding box refine-
ment. Note that the inside RPN [11] is only used during
EM-like LBBA training to improve the training stabiliza-
tion and generalization ability of LBBA, and will not be
used during the inference stage. We argue that using Faster
R-CNN as adjuster has two merits. (i) For the initializa-
tion of LBBA training, Faster R-CNN exhibits better perfor-
mance than Fast R-CNN. (ii) By combining precomputed
proposals and proposals from RPN, box regression branch
of LBBA can generalize better to various proposals, result-
ing in more precise box refinement results.

D. More Ablation Studies

D.1. Evaluating LBBA Module Separately

In our solution, LBBA module is designed to be class-
agnostic, making that the learned box regressors can be
shared among different object classes and transfered to
newly added classes. Though we have shown the positive
effect of LBBA module in terms of mAP metric, we still
evaluate it separately in a manner of proposal evaluation.



Table 5. Detailed comparison of different methods on COCO-20.
Methods mAP AP50 AP75 APS APM APL AR100 ARS ARM ARL

OICR 9.5 22.8 6.8 2.4 9.4 17.5 24.2 8.0 21.8 38.9
OICR+REG 10.4 23.9 8.1 3.9 9.5 17.8 22.3 7.5 19.3 35.1
Ours LBBA 13.0 27.5 11.2 4.1 12.5 21.4 25.1 8.6 23.3 38.4
Ours LBBA+masking 13.7 29.9 11.5 4.2 13.0 22.1 25.8 8.8 23.9 39.7

Table 6. Experimental settings on auxiliary datasets and target
datasets.

Data Settings Auxiliary Datasets Target Datasets
Setting 1 COCO-60 PASCAL VOC 2007
Setting 2 COCO-60 PASCAL VOC 2012
Setting 3 COCO-60 COCO-20
Setting 4 ILSVRC-Source ILSVRC-Target

Therefore we calculate mean IoU between refined propos-
als from LBBA module and GT boxes. As a comparison,
we also calculate mIoU between precomputed proposals
and GT boxes as a baseline. IoU performance of LBBA
is shown as Table 7. It is clear to conclude that our LBBA
module obtains more precise box refinement ability after
EM-like LBBA training.

D.2. Performance with ideal LBBA

Our observation is that localization attribute is shared
among all kinds of objects, such that a fully supervised box
refinement network trained on an auxiliary dataset can be
utilized during transfer learning. Therefore, to verify our
observation, we build another LBBA-boosted WSOD ex-
periment. During this experiment, we replace pretrained
LBBA network by ground-truth bounding box and keep us-
ing image class labels to supervise MIL branch, because
ground-truth boxes can be seen as an ideal LBBA net-
work to supervise box regression branch of WSOD net-
work during LBBA-boosted WSOD. And then we execute
such LBBA-boosted WSOD with the same training sched-
ule. Detection performance of WSOD with ideal LBBA on
PASCAL VOC 2007 test set is shown as Table 8. Compared
to baseline OICR +[12] as well as our proposed LBBA,
LBBA-boosted WSOD with ideal LBBA ourperforms by
7.0% on mAP and 2.6% on mAP, respectively. This im-
provement verifies our observation, and also encourages us
to develop more effective adjusters.

D.3. Effect of Masking Strategy for Proposal Clas-
sification

Improving the performance of proposal classification
usually benefits to improving the overall detection perfor-
mance of WSOD. Therefore, we also explore the effect
of our masking strategy in our LBBA-boosted WSOD net-
work. To demonstrate the effect of the masking strategy, we
compared LBBA method with masking strategy with pure
LBBA. Table 12 shows the effect of the masking strategy
of proposal classification. Compared to pure LBBA with

OICR and OICR +[12], our masking strategy improves de-
tection performance by 1.3% and 0.7% mAP on PASCAL
VOC 2007 test set. We also explore the effect of τ in mask-
ing strategy, experimental result is shown as Table 13, we
found that τ = −3.0 is the best selection during our mask-
ing strategy. Above results indicate that classification pre-
dictions from multi-label image classifier are able to select
categories with high scores. By suppressing the bounding
box scores of non-appearing categories, the proportion of
false positives in the final test results is reduced, which is
beneficial to improving the overall detection performance
of WSOD.

D.4. Is One-class Adjuster Necessary?

During our experiments, to simplify overall experimen-
tal settings, we adopt conventional Faster R-CNN [11] with
class-agnostic box regression branch as our LBBA funda-
mental structure, and keep the original RoI classification
branch (e.g., 60 classes on COCO-60 dataset). But how
the performance of LBBA-boosted WSOD will be changed
if we use class-agnostic detector as our LBBA? To solve
this question, we train another LBBA whose box regres-
sion branch and RoI classification branch are both class-
agnostic. And then we execute EM-like LBBA training as
well as LBBA-boosted WSOD sequentially using one-class
LBBA mentioned above. Performance of LBBA-boosted
WSOD supervised by one-class LBBA on PASCAL VOC
2007 is shown as Table 9. Compared to WSOD with
our proposed standard LBBA, LBBA with one-class LBBA
achieves a slight performance improvement (56.2% mAP
vs. 55.8% mAP) on PASCAL VOC 2007 test set. How-
ever, using conventional LBBA during our experiment is
convenient and flexible because each pretrained object de-
tection network can be utilized as a pretrained LBBA di-
rectly. Based on this observation, we keep using conven-
tional Faster R-CNN [11] as our LBBA.

D.5. How to update θf?

During our LBBA-boosted WSOD in Sec. 3, we use
{g0 . . . gT } with corresponding parameters {θ0g . . . θTg } to
supervise our WSOD network f with θf progressively. And
to construct a simpler training pipeline, we can directly use
the last gT to supervise f with θf . Therefore we are curious
about the performance gap between updating θf progres-
sively and updating θf directly. Corresponding evaluation
results are shown as Table 11. The WSOD network up-



Table 7. Per-class mIoU and average mIoU of our LBBA with precomputed proposals. It is clear to conclude that LBBA obtains more
precise box refinement ability.

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV mIoU
Precomputed Proposals 46.1 45.7 45.3 45.3 44.6 46.1 45.7 47.1 45.8 45.6 48.6 46.2 45.8 46.1 45.5 45.0 45.0 47.8 46.9 45.0 45.9
LBBA Module 63.0 54.6 65.5 60.8 60.5 68.3 68.3 69.4 57.4 69.8 57.8 69.0 65.6 58.7 59.3 52.0 66.7 64.5 66.0 68.5 63.2

Table 8. Does ideal LBBA improve performance of WSOD?
Methods mAP (VOC07)
baseline OICR+[12] 51.4
Ours LBBA 55.8
Ours LBBA (ideal) 58.4

Table 9. Does one-class LBBA improve performance of WSOD?
Methods mAP (VOC07)
Ours LBBA 55.8
Ours LBBA (one class) 56.2

Table 10. Detailed comparison of different methods on ILSVRC13
Target

Methods AP50
OICR 20.5
OICR+REG 22.4
LBBA(OICR) 28.0
LBBA(OICR)+masking 30.1

Table 11. Comparison of updating pipeline of f with θf (here
we set T=3). Evaluation result shows that updating progressively
achieves better performance while updating with last gT achieves
a similar performance with only one training stage.

Methods Stages mAP (VOC07)
updating progressively 4 55.8
updating with last gT 1 55.4

dated progressively achieves better performance, while the
WSOD network updated with the last gT achieves a similar
performance (-0.4% in terms of mAP on VOC 2007 dataset)
with only one training stage. This result indicates that we
can build a lighter LBBA-boosted WSOD training pipeline
by only using the last gT in practice, but training progres-
sively is usually stable and better.

E. Comparison with State-of-the-arts
We compare our method with several state-of-the-art

WSOD approaches in terms of detection and localization
performance on PASCAL VOC datasets. As suggested in
[2, 18, 17, 21, 12, 1, 24], we report detection results on test
set and localization results on trainval set, respectively. Ta-
ble 1 and Table 2 compares the results of different state-
of-the-art WSOD approaches on PASCAL VOC 2007 and
2012 datasets. It can be seen that our LBBA improves OICR
and OICR+REG over 15.3% and 5.0% on PASCAL VOC
2007 dataset, respectively. Furthermore, our method per-
forms better than all competing methods, except Zhong et
al. [24]. Note that [24] uses a stronger backbone model
and knowledge transfer strategy by directly incorporating
source and target datasets. As shown in Fig. 1, our method
has the ability to generate precise bounding boxes. On PAS-
CAL VOC 2012, our LBBA is superior to all competing

methods and obtains more than 1% gains over all WSOD
approaches. Experimental results show that our method is
effective in improving the detection performance of WSOD.
As shown in Fig. 2, our method also has the ability to gener-
ate precise bounding boxes on PASCAL VOC 2012 dataset.

We further evaluate the localization performance of our
method. Table 3 and Table 4 lists the results of several state-
of-the-art WSOD approaches on PASCAL VOC 2007 and
2012. Our LBBA outperforms OICR by 11.7% and also
improves the baseline OICR+REG over 4.3% on PASCAL
VOC 2007 dataset. Besides, our LBBA performs better
than all competing methods. Meanwhile, on PASCAL VOC
2012, our LBBA is also superior to all competing meth-
ods and obtains 1.3% over WSOD 2[23]. In comparison
to Zhong et al. [24], our LBBA-based method employs a
weaker backbone model and avoids the direct joint use of
the source and target datasets, while still achieving compet-
itive CorLoc results under the settings of both single-scale
testing and multi-scale testing. Above results show that our
LBBA-based method is effective in improving the localiza-
tion performance of WSOD.

F. Generalization to COCO-20
We verify the generalization ability of our LBBA method

using a COCO-20 dataset. To this end, we build COCO-20
dataset by collecting the images that only contain instances
belonging to the remain 20 classes from train and val sets
of COCO 2017 [10], and use them as the corresponding
train and val sets. Comparing with PASCAL VOC, COCO-
20 is more challenging due to more instances and complex
layouts. Here we adopt OICR+REG as WSOD network f ,
and compare with OICR and OICR+REG as baseline meth-
ods. We train all models using exactly the same settings in
sec. C, and the results are listed in Table 5. Note that our
LBBA method with masking strategy outperforms OICR
and OICR+REG by 3.5% (4.7%) and 2.6% (3.6%) in terms
of mAP and AP50, clearly demonstrating the generalization
ability of our LBBA method. After adding masking strat-
egy, our LBBA method outperforms OICR and OICR+REG
by 4.2% (7.1%) and 3.3% (6.0%) in terms of mAP and
AP50, which demonstrates the effectiveness of our mask-
ing strategy.

G. Generalization to ILSVRC-Target
To illustrate that our method can be generalized to more

categories, we build the ILSVRC-Target dataset following
Appendix B.5 and conduct experiments on it. The base-



Table 12. Effect of Masking Strategy, where +masking means our
LBBA with masking strategy.

Methods mAP (VOC07)
LBBA(OICR) 55.1
LBBA(OICR)+masking 56.4
LBBA(OICR+[12]) 55.8
LBBA(OICR+[12])+masking 56.5

Table 13. Varying τ for Multi-Label Image Classifier. We evalu-
ated τ on LBBA-Boosted WSOD with OICR head.

τ mAP (VOC07)
+0.5 55.4
-0.5 55.7
-1.5 56.1
-3.0 56.4
-6.0 56.3
-10.0 56.1
-12.0 55.8
-20.0 55.3

line models setting is same as Appendix F and results are
listed in Table 10. Note that our LBBA method outper-
forms OICR and OICR+REG by 7.5% and 5.6% in terms
of AP50, which proves that our method can withstand the
test of scenes containing more categories of objects. Fur-
thermore, with the enhancement of masking strategy, the
performance of WSOD network further outperforms pure
LBBA-boosted WSOD by 2.1% in terms of AP50, which
shows that masking strategy is able to improve quality of
proposal classification and can be generalized to more cate-
gories simultaneously.

H. Discussion
In this section, we will discuss our proposed LBBA as

well as some modern weakly supervised object detection
algorithms in different aspects.

H.1. Discussion of our LBBA

Here we discuss several potential merits of the prob-
lem setting and our proposed method. In LBBA-boosted
WSOD, the auxiliary well-annotated dataset is not needed
and only a smaller amount (e.g., 3) of LBBAs are re-
quired. Thus, our problem setting allows deploying LBBAs
to versatile weakly annotated datasets for boosting detection
performance while avoiding the leakage of well-annotated
dataset. In terms of memory consumption, LBBAs are
much more economical than the storage of well-annotated
dataset.

For the sake of generalization ability, we adopt class-
agnostic LBBAs. In comparison to the universal bound-
ing box regressor [7], stage-wise LBBAs are specifically
learned to adjust the region proposals generated by WSOD
towards the ground-truth bounding boxes, and thus are more
effective. To show the generalization ability, the LBBAs
learned from well-annotated dataset can be readily deployed
to the weakly-annotated dataset with non-overlapped ob-

Table 14. Some analysis of Zhong et al. in iteration 0. We keep
auxiliary dataset and weakly annotated dataset isolated to evaluate
performance of Zhong et al. fairly.

Methods mAP (VOC07)
Zhong et al. [24] iter 0 54.4
Zhong et al. [24] w/o Test-Time Aug iter 0 41.8
Zhong et al. [24] w/ COCO-60-full iter 0 ∼45

ject classes. Nonetheless, LBBAs also work well when the
weakly-annotated dataset has the overlapped object classes.

Furthermore, the two subtasks, i.e., learning bounding
box adjusters and LBBA-boosted WSOD, can be respec-
tively regarded as a kind of knowledge extraction and trans-
fer. With learning bounding box adjusters, we extract the
knowledge from the auxiliary well-annotated dataset. Con-
sequently, the extracted knowledge, i.e., LBBAs, will be
transferred to the WSOD models for improving detection
performance. In comparison to directly incorporating aux-
iliary dataset with weakly-annotated dataset, we argue that
the separation of knowledge extraction and transfer is prac-
tically more natural, convenient, and acceptable.

H.2. Discussion of ResNet-WS

Shen et al. [14] proposed a novel residual network back-
bone architecture, which combines the advantage of resid-
ual blocks for feature extraction as well as redundant adap-
tation neck like fc6-fc7 of VGG, and leads to better detec-
tion performance of the residual network with the weakly
supervised setting.

Due to hardware limitations, we did not employ ResNet-
WS backbone in our experiments. However, such improve-
ments mainly focus on the backbone of WSOD networks
and are able to easily plug into our framework to improve
the overall performance of our proposed method. We be-
lieve that such method is compatible with ours.

H.3. Discussion of CASD

Recently we noticed that Huang et al. [6] proposed a
novel Comprehensive Attention Self-Distillation approach
to further improve performance of weakly supervised ob-
ject detection. This approach obtains higher detection per-
formance than ours and lower localization performance than
ours. Similarly, as mentioned in the ablation study, our ap-
proach is compatible with various WSOD heads. Naturally,
CASD is also compatible. We also believe that the detection
performance of WSOD can be better when we apply CASD
to our proposed method.

H.4. Discussion of Zhong et al.

Zhong et al. proposed a novel transfer learning based
weakly supervised object detection framework, which uti-
lizes a progressive knowledge distillation training proce-
dure and builds up a universal object proposal generator as
well as the corresponding WSOD network.



This method achieves the state-of-the-art detection per-
formance on PASCAL VOC dataset. However, ththisese
method exists some difference with our proposed method,
which can be listed as follows. First, the Method of Zhong
et al. proposed a kind of proposal generator while our pro-
posed method is a kind of box refinement network. Sec-
ond, during EM-like Multi-stage LBBA training as well
as LBBA-boosted WSOD, we keep auxiliary dataset and
weakly annotated dataset isolated to avoid information leak-
age of weakly annotated dataset. Finally, after LBBA-
boosted WSOD, our WSOD network can generate object
detection results individually without help from LBBA.

Besides, the approach of Zhong et al. also suffers from
three fundamental limitations during applications. First,
when training OCUD in iteration 1 or 2, ground-truth data
from auxiliary dataset and pseudo labels from weakly an-
notated detection dataset are mixed and fed into the OCUD
network jointly. As we discussed in Section H.1, this mix-
ture might introduce information leakage of weakly anno-
tated dataset and longer training time in practice.

Second, to improve detection performance during evalu-
ation, predictions from the MIL network of Zhong et al. are
augmented by adding corresponding objectness scores from
OCUD. When removing Test-Time-Augmentation (same
with using MIL network individually), the performance of
Zhong et al. drops to 41.8% mAP.

Finally, Zhong et al. [24] trains the OCUD on COCO-
60-clean dataset which is mentioned in Sec. B.4, and this
dataset is easier to learn. Different from [24], we optimize
our LBBAs on COCO-60 dataset. For a fair comparison, we
evaluate both two methods with the same COCO-60 dataset
(containing 98K images) as the auxiliary dataset. When
training on our COCO-60 dataset (only removing annota-
tions of VOC classes in COCO dataset) in iteration 0, per-
formance of Zhong et al. drops to ∼ 45% mAP on PASCAL
VOC 2007 test set (shown in Table 14). A possible reason
is that the regions with the annotation removed are treated
as background in OCUD, which will reduce the recall rate
for COCO-60-full. Compared to Zhong et al., our LBBA-
boosted WSOD is much more stable with data with noise
(see Table 1 for quantitative results).

In conclusion, our method is different from Zhong et al.,
but can be compatible with each other. We believe that the
detection performance of WSOD can be better when we ap-
ply the method of Zhong et al. into our proposed method.
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