
Learning to Better Segment Objects from Unseen Classes
with Unlabeled Videos

— Supplementary Material —

Yuming Du Yang Xiao Vincent Lepetit
LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-vallée, France

{yuming.du, yang.xiao, vincent.lepetit}@enpc.fr
https://dulucas.github.io/gbopt/

In this supplementary material:
• We give the derivation of our objective function ap-

pearing in Eq. (2) of the main paper (Section 1);
• We detail our two-stage optimization method (Sec-

tion 2);
• We detail our method to compute the “synthetic optical

flow” F t in Eq. (4) of the main paper (Section 3);
• We provide implementation details of the evaluation

of our method and its comparison with related meth-
ods (Section 4).

1. Formulation
As discussed in Section 1 of the main paper, our goal is

to improve the performance of a pre-trained class-agnostic
instance segmentation on unseen classes. We do this by first
using this model for mask generation on unlabeled video se-
quences. Then we apply our method to automatically select
the correct masks and use them to train the instance segmen-
tation model and boost its performance on unseen classes.

Given a video of T frames, we start from a set of mask
candidates Mt = {Mt,1..Mt,N} for each frame It ob-
tained using a pre-trained class-agnostic instance segmen-
tation model, with N the number of masks candidates in It.
To select the mask candidates that actually correspond to
objects, we want to exploit several cues and a constraint:
• The “Background cue”: Segmenting typical back-
grounds such as sky or grass gives us a cue about where
the objects are, whether they move or not.
• The “Flow cue”: The optical flow between consecutive
frames gives us a cue about the moving objects.
• The “Consistency cue”: The selected masks should be
consistent not only between consecutive frames, but also
over long sequences.
• The “Non-overlapping constraint”: An additional con-
straint that is usually overlooked is that the masks should
not overlap: Ideally, one pixel in the image can belong to at
most one mask.

To combine these cues to select the correct masks, we
rely on a Bayesian framework. The selection problem can
be formalized as maximizing:

P
(
C1, ..,CT |I1, .., IT

)
, (1)

where Ct is a set of binary random variables, with Ct,i = 1
corresponding to the event that the mask Mt,i is selected
and 0 that it is not. By applying Bayes’ theorem, the prob-
lem becomes the maximization of:

P
(
I1, .., IT |C1, ..,CT

)
P
(
C1, ..,CT

)
. (2)

To keep both the image and optical flow cues, we use a
Product-of-Experts [11] with cliques made of two consecu-
tive images to model the first term as:

P
(
I1, .., IT |C1, ..,CT

)
∝
∏
t

P
(
It, It+1|C1, ..,CT

)
.

(3)
We make the standard assumptions that the successive states
(the Ct) follow a Markov process, and that the measure-
ments at time t (the It) depend only upon the current state
(Ct). We denote δt,i the realization of the random binary
variable Ct,i (thus δt,i ∈ {0, 1}) and ∆t = {δt,1, .., δt,N}
the realization of Ct. After standard derivations, the opti-
mization problem becomes:

arg max
{∆1,..,∆T }

P (C0)
∏
t

P
(
It, It+1|Ct,Ct+1

)
P (Ct+1|Ct) .

(4)
P
(
It, It+1|Ct,Ct+1

)
is high when the image likelihoods

P
(
It|Ct

)
and P

(
It+1|Ct+1

)
are high and when the object

motions between It and It+1 are consistent with states Ct

and Ct+1. P
(
It, It+1|Ct,Ct+1

)
is thus directly propor-

tional to:

P
(
It|Ct

)
P
(
It+1|Ct+1

)
P
(
Ft|It, It+1,Ct,Ct+1

)
, (5)



where Ft is the optical flow for the pair of frames (It, It+1).
After taking the log of Eq. (4), the optimization problem can
be written as:

arg min{∆1,..,∆T }
∑

t λILI

(
It,∆t) +

λFLF

(
Ft, It, It+1,∆t,∆t+1

)
+ λpLp(∆t,∆t+1) ,

(6)

under the non-overlapping constraint. λI , λF , and λp are
weights. We take λI = λF = 1 and λp = 0.5 in all our
experiments.

2. Two-Stage Optimization
In this section, we detail our efficient two-stage opti-

mization of the objective function in Eq. 6. Recall that,
in the first stage, we select the most promising combina-
tions of masks for each frame independently using the back-
ground loss LI and under the constraint that the selected
masks should not overlap, we formulate this problem as a
K-shortest path search problem and detail our method be-
low in Section 2.1. Then, we detail in Section 2.2 the second
stage where we optimise the full objective function on the
whole video while considering only the top combinations
selected during the first stage.

2.1. Image-Level Optimization

Given a frame It, we obtain a set of mask candidates
Mt using MP R-CNN. To identify the top-K combinations
of masks according to LI

(
It,∆t

)
without having to per-

form an exhaustive evaluation, we iteratively apply Dijk-
stra’s algorithm [6]. To do this, we first construct a binary
tree B(V, E).

As shown in Figure 1 for the easy case where the masks
inMt do not overlap, nodes Vi = {Vi,j}j at the same level
in the tree correspond to the state of the i-th mask Mi,t ∈
Mt i.e. if it is selected or not, and edges Ei = {Ei,j}j at the
same level are weighted with the contribution to LI

(
It,∆t

)
when mask Mi,t is selected or not. In this way, the problem
of finding the most promising combinations of masks for
a frame thus becomes to find the K-shortest paths in the
binary tree B(V, E).

The time complexity for finding these K-shortest paths
by exhaustive search is O(2N ), for N masks in each image,
which is computationally prohibitive. We thus iteratively
apply Dijkstra’s algorithm [6] to efficiently find the top-K
shortest paths. We get the shortest path H1 by directly ap-
plying Dijkstra’s algorithm on the binary tree B(V, E).

To find the next shortest path, we consider a set U of
paths, initialized with H1 as its only element. The whole
procedure consists of two nested loops. The first loop is
over each path H in U . Given H, the second loop is over
each edge Ei,j of H. We set the weight of Ei,j to infinity
and apply Dijkstra’s algorithm on the resulting tree. Each
time we run Dijkstra’s algorithm, we obtain an “intermedi-
ate shortest path” different from H. After exiting the two

Figure 1. Image-Level Optimization. Example of a tree B(V, E)
in the non-overlapping case. Nodes at the i-th level correspond
to the selection (δt,i = 1) or non-selection (δt,i = 0) of the i-
th mask. Edges at the i-th level are weighted according to the
image term LI and depending whether or not the i-th mask is se-
lected. As there is no overlaps among the three masks, the weights
of edges can be calculated independently. A colored node corre-
sponds to the selection of the mask with the same color; a gray
node corresponds to the case where the mask is not selected.

loops, we add all the intermediate shortest paths to U and
remove H1 from it. The shortest path in U is now the sec-
ond shortest path H2 in the tree. We can then repeat the
above procedure to get the next shortest paths.

This method decreases the time complexity from 2N to
O(KN3), where N is the number of masks per image and
K is the number of optimal combinations required.

Below, we start with the easier case, where there is no
overlap among the mask candidates in Mt. In this case,
each pixel in the image belongs to at most one mask candi-
date. The non-overlapping constraint is naturally satisfied,
and the contributions of the masks to LI

(
It,∆t

)
are inde-

pendent of each other. Then, we dive into the overlapping
case and show that we can transform the overlapping case to
the non-overlapping case with a decomposing-then-hashing
operation, and calculate LI

(
It,∆t

)
exactly.

Non-Overlapping Case. We first consider the easier case
where there is no overlap between the mask candidates, il-
lustrated by Figure 1. In such case, image term LI

(
It,∆t

)
can be written as a sum over the masks inMt plus a special
additional mask made of the pixels that do not belong to any



Figure 2. Image-Level Optimization. Decomposing-then-
hashing for the overlapping case. The red mask represents the
overlapping region between Mt,1 and Mt,2. The contribution of
M1,t can thus be decomposed into the sum of contributions of the
two non-overlapping green and red sub-masks.

mask(recall that ∆t = {δt,1, .., δt,N}):

LI

(
It,∆t

)
= CE

(
Bg(It), 1− Fg(∆t)

)
=
∑

Mt,i∈Mt
L′
I(It,Mt,i, δt,i) + L̄I(Mt,bg)

(7)
with

L′
I(It,Mt,i, δt,i) = −

∑
x∈Mt,i

(1− δt,i) log Bg(It)(x)

+δt,i log
(
1− Bg(It)(x)

)
,

(8)
where the sum is over image locations x in mask Mt,i, and

L̄I(Mt,bg) = −
∑

x∈Mt,bg
log Bg(It)(x) . (9)

Term L̄I(Mt,bg) in Eq. (7) is constant. Mt,bg represents
the background image generated for the selected masks.
We can ignore it here for the selection of the top-K mask
combinations. Note that it still needs to be included in LI

for the Video-Level Optimization. We can use the value
of L′

I(It,Mt,i, 1) as weight for an edge corresponding to
the selection of mask Mi,t, L′

I(It,Mt,i, 0) as weight for an
edge when mask Mi,t is not selected.

Overlapping Case. In general, the mask candidates pre-
dicted by MP R-CNN overlap, and the contributions of
masks {Mi,t}i to LI

(
It,∆t

)
are no longer independent.

We propose a decomposing-then-hashing method which
first decomposes each mask into a group of non-overlapping
sub-masks, then identify the contribution of each mask us-
ing the sum of the sub-masks. When adding a novel node to
the path, we fit the non-overlapping constraint by inspect-
ing if there are some sub-masks selected in both the current
node and the nodes in this path.

As shown in Figure 2, we first decompose each mask
Mt,i into a combination of sub-masks {M ′

t,i,j}j depending
on whether the pixels in the mask belong to other masks

Figure 3. Image-Level Optimization. Example of B(V, E) in
the overlapping case. Each time a node is added in the path, the
weight of the edge is calculated by considering all the previous
nodes in the path.

or not. The whole image can thus be decomposed into the
combination of all sub-masks {M ′

t,i,j}i,j and Mt,bg , with
no overlaps among the sub-masks in {M ′

t,i,j}i,j . Then, we
can construct a hash table where the key is the index of each
mask Mt,i and the value is the index of corresponding sub-
masks {M ′

t,i,j}j for each mask Mt,i.
Similar to the non-overlapping case, with the help of

non-overlapping sub-masks, we have:

L′
I(It,Mt,i, δt,i) =

−
∑

S∈{M ′
t,i,j}i,j

∑
x∈S

(
(1− δt,i) log Bg(It)(x)+

δt,i log
(
1− Bg(It)(x)

))
(10)

which means that the contribution of each mask to
LI

(
It,∆t

)
can be decomposed into the sum of the contri-

butions of its corresponding sub-masks. Eq. (7) can thus be
written as:

LI

(
It,∆t

)
=
∑

S∈{M ′
t,i,j}i,j

L′
I(It, S) + L̄I(Mt,bg) .

(11)
A tree for an overlapping case is shown in Figure 3.

When searching for the shortest path in the graph, given a
path, each time a node is added to the path, with the help of
the hash table constructed aforementioned, we first check
whether there are any sub-masks M ′

t,i,j already being as-
signed a certain “state” in the previous nodes (by state, we
mean if it has been selected as foreground or selected as
background).

If not, like the non-overlapping case, we consider the
L′
I(It,Mt,i, δt,i) for the weight of the edge B, ∀i > 0.

If a sub-mask has already been assigned some state, there
are two possible cases. The first case is that the sub-masks
M ′

t,i,j selected both in the current node and a previous node
have the same state. When the state is “background”, as we
have already counted the contribution of sub-masks in pre-
vious edges, the weight of the current edge is assigned to
the sum of the contribution of the rest of masks. When the
state is “foreground”, since the masks should not overlap,
the weight of the current edge is set to infinity to prohibit
this path from becoming one of the top-K shortest paths.



Figure 4. Video-Level Optimization. Example of graph
G(V, E), represented only between two consecutive frames It and
It+1 for a video sequence of chimpanzees. Each image in the col-
umn represents a combination of masks ∆t, different masks are
shown in different colors (Best seen in color).

The second case is that some sub-masksM ′
t,i,j selected both

in the current node and a previous node possess different
states. In order to calculate the weight of the current edge,
along with the contribution of each sub-mask by consider-
ing the state assigned by the current node, we subtract the
contribution of the shared sub-masks according to their as-
signed state in the previous node.

2.2. Video-Level Optimization

As shown in Figure 4, after the top-K combinations of
masks for each frame have been found by the first stage, we
construct a graph G(V, E) to find the best combinations of
masks for each frame by optimizing the objective function
over the whole video. Node Vt,k represents the k-th combi-
nation of masks of frame It. Et,t+1,k,k′ represents the edge
that connects node Vt,k and node Vt+1,k′ . The weight of
edge is a sum over the image term, the flow term and the
motion model term:

WeightEt,t+1,k,k′ =

λILI

(
It,∆t

)
+

λFLF

(
Ft, It, It+1,∆t,∆t+1

)
+

λpLp(∆t,∆t+1) .

(12)

In our case, as the weight of every edge is non-negative,
we can use Dijkstra’s algorithm [6] to select the combi-
nation of masks among the top-K combinations for each
frame.

3. Generation of Synthetic Flow F t

The motion of the selected objects should be consistent
with the optical flow. To deal with camera motion, we con-
sider that the optical flow of the background can be differ-
ent from 0 (but uniform). Given two consecutive frames It
and It+1, together with two combinations of masks ∆t and
∆t+1 for these frames, we propose a method to generate a
”synthetic optical flow” which is then compared against the
optical flow predicted by some optical flow model.

An overview of the generation pipeline is shown in Fig-
ure 5. We first generate two synthetic images I ′t and I ′t+1

by cropping and pasting the content of selected masks in
frame It and It+1 to a background image Ibg randomly se-
lected from the Internet. Then we pass the pair of synthetic
images into a optical flow model g to generate a synthetic
F

′
t. The pixels outside the selected masks are assigned the

average flow in Ft computed over the background.
The motivation for using a background image rather than

a uniform background color which seems more natural is to
make sure the objects are visible before computing the flow.
For example, in the case of Figure 4, using a uniform black
background would make optical flow prediction fail for the
dark chimpanzees. Using a real image is a simple way to
prevent this problem.

4. Implementation Details

4.1. Training Details

All our experiments were carried out on 4 Nvidia RTX
2080Ti GPUs. During the training, mixed precision train-
ing is used to reduce memory consumption and accelerate
training.

Pre-training. For the pre-training on the COCO dataset,
we use the open source repo of Mask-RCNN [17] and fol-
low the training setting of [9], except that we adopt the
class-agnostic setting, where all 80 classes are merged into
a single “object” category. We use ResNet-50-FPN [15] as
our backbone. As in [19], we call the Mask R-CNN model
trained using this class-agnostic setting “MP R-CNN” for
Mask Proposal R-CNN. Our backbone network is initial-
ized with weights pre-trained on ImageNet [5]. During
training, the shorter edge of images are resized to 800 pix-
els. Each GPU has 4 images and each image has 512 sam-
pled RoIs, with a ratio of 1:3 of positives to negatives. We
train our Mask R-CNN for 90k iterations. The learning rate
is set to 0.02 at the beginning and is decreased by 10 at the
60k and 80k iteration. We use a weight decay of 0.0001 and
momentum of 0.9.

Fine-tuning. We finetune MP R-CNN on the masks of
Unseen-VIS-train generated by our method for 1k itera-
tions. The initial learning rate is set to 0.002. The rest
of the parameters and data augmentation strategies are set
to be the same with the parameters used for pre-training.
For the DAVIS Unsupervised benchmark, we finetune MP
R-CNN on the masks generated on the 60 training videos
of DAVIS2017 dataset, using the same hyper-parameters as
for Unseen-VIS-train.



Unseen-VIS-train Training Unseen-VIS-test COCO val
Pretrained on COCO GT Generated Masks Strategy AP AP50 AP75 AR1 AR3 AR5 AP AP50 AP75 APS APM APL

X – 35.8 61.2 38.1 33.3 47.3 50.3 35.3 62.6 35.9 20.8 40.6 52.4
X X retrain 51.2 80.2 56.8 45.0 56.8 59.5 34.9 61.8 35.7 20.6 40.2 52.3
X X retrain 38.9 67.8 41.2 35.2 48.9 51.4 35.0 62.0 35.8 20.5 40.2 52.3
X X finetune 50.8 80.9 54.6 43.6 58.6 60.6 24.0 44.9 23.4 15.3 28.7 33.6
X X finetune 39.0 67.9 41.3 35.2 48.9 51.4 32.1 57.0 32.8 17.5 39.3 51.1

Table 1. Results on the COCO2017 validation dataset and Unseen-VIS-test adopting different training strategies. The performance of
MP R-CNN fine-tuned on our generated masks on Unseen-VIS-train is much less affected compared to MP R-CNN fine-tuned on the
ground truth masks. By training on the dataset created by naively mixing the training dataset of COCO with our generated masks on
Unseen-VIS-train, we can achieve the same results on Unseen classes as fine-tuning while preserving the performance on Seen classes.

4.2. Implementation Details for the Related Meth-
ods

4.2.1 Foreground/Background Segmentation

In order to estimate the background regions present in the
image, similar to [13], we adopt a FPN based network for
segmentation. We use ResNest-200 [28] as our backbone.
The regions that contain instances are considered as fore-
ground and background otherwise to generate binary mask
for training. We set the initial learning rate to 0.02, then
decrease it by 10 at the 240k and 255k iteration. The batch
size is set to 16. Scale augmentation is applied during train-
ing to further improves results.

4.2.2 Optical Flow Estimation

We use the model released by [24] trained on FlyingTh-
ings [18]. FlyingThings is a large-scale synthetic dataset
for optical flow estimation. The dataset is generated by ran-
domizing the movement of the camera and synthetic ob-
jects collected from the ShapeNet dataset [3]. The model
for optical flow estimation is pre-trained on FlyingThings
for 100k iterations with a batch size of 12, then for 100k
iterations on FlyingThings3D with a batch size of 6.

4.2.3 Video Object Segmentation

NLC [8]. We use the re-implementation code provided
by [21]. In the original implementation of the NLC al-
gorithm, an edge detector pre-trained on labeled edge im-
ages [7] is used, while the re-implementation of [21] re-
places the trained edge detector with unsupervised su-
perpixels. In order to obtain a motion segmentation for
each frame, a per-frame saliency map based on motion is
computed then averaged over superpixels calculated using
method from [1]. Meanwhile, a nearest neighbor graph is
computed over the superpixels in the video using location
and appearance as features. Finally, the saliency is propa-
gated across frames using a nearest neighbor voting scheme.
For more details, please refer to [8, 21].

FST [20]. We use the official code released by the au-
thors to generate masks on the videos from Unseen-VIS-
train.

IOA [4]. We use the official code released by the au-
thors. We first use the official code of the VideoPCA al-
gorithm [23] to find the saliency regions which stand out
the background in terms of motion and appearance. Then
we follow the same approach as in [4] to keep only the top
20% saliency maps based on the mean score of the non-zero
pixels. The remaining saliency maps are used for training
of the PSPNet [29] with ResNet-50 [10] as backbone, and
initialized with ImageNet pre-trained weights [5].

UnOVOST [16]. We use the official code released by
the authors, and use our MP R-CNN for mask proposals
generation. All the hyper-parameters are kept the same as
in the original work [16].

TWB [2]. We use the official code released by the au-
thors, and replace the human detector with our MP R-CNN.
Since the confidence score for objects of unseen classes are
sometimes low, we lower the thresholds for filtering detec-
tion proposals and regression results to 0.1. Note that [2]
applies a Re-ID network to re-identify the persons that are
missing in previous frames, in order to re-identify the an-
imals in Unseen-VIS-train, we replace the Re-ID network
trained on the pedestrian dataset with a ResNet-50 pre-
trained on ImageNet [5].

Data Distillation [22]. We use the official code released
in Detectron2 [26] and follow the same pipeline as stated in
[22] for filtering and retraining.

UVC [14]. We use the model released by the authors for
mask wrapping. The model is trained in a self-supervised
manner on the Kinetics [12] dataset. During inference, we
follow the same setting of UVC to resize the shorter edge
of image to 480 pixels. For Zero-Shot UVC, the masks for
the first frame are obtained by selecting the masks predicted



(a)

(b)

(c)
Figure 5. Generation pipeline for ”synthetic optical flow” F t.
(a) We first generate two synthetic images I ′t and I ′t+1 by cropping
and pasting the content of selected masks in frame It and It+1

to a background image Ibg randomly selected from the Internet.
(b) We then feed the pair of synthetic images to a optical flow
model g to generate a synthetic F

′
t. (c) The pixels outside the

selected masks are assigned the average flow in Ft computed over
the background.

by MP-RCNN on the first frame whose confidence score is
larger than 0.1.

RVOS [25]. We use the official codereleased by the au-
thors, and replace the backbone of RVOS by ResNet-50. In-
put images are resized to 256×448. Each batch is composed
with 4 clips of 5 consecutive frames. The model is trained

on the 1089 videos of seen classes on YouTube VIS [27] for
50 epochs. The Adam optimizer is used to train our network
and the initial learning rate is set to 1e−6.

4.3. Results on COCO dataset

Detailed results are shown in Table 1. The performance
of MP R-CNN on COCO-2017-val degrades dramatically
after finetuning on either the ground truth of Unseen-VIS-
train or the masks generated by our approach. Our guess
is that this degradation results from the significant domain
gap between images in YouTube-VIS and COCO. Interest-
ingly, compared with the ground truth of Unseen-VIS-train,
the performance of MP R-CNN is much less affected by
finetuning on the masks generated by our approach, which
demonstrates that our approach helps to preserve to some
extent the information of the dataset used for pre-training.

For retraining, we use a naive strategy to train MP R-
CNN from scratch on the mixture of COCO dataset and la-
bels from Unseen-VIS-train. We add the images and anno-
tations of Unseen-VIS-train into the COCO dataset, the an-
notations can be either ground truth or masks generated with
our approach. Then we follow the training strategy given in
Section 4.1. Mask R-CNN is trained on 120k training im-
ages of COCO for 90k iterations with batch size 16. The
mixture of COCO and Unseen-VIS-train has 20k additional
training images from Unseen-VIS-train, we thus train the
our MP R-CNN on the mixture dataset for 110k iterations.

References
[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien

Lucchi, Pascal Fua, and Sabine Süsstrunk. SLIC Superpixels
Compared to State-Of-The-Art Superpixel Methods. IEEE
TPAMI, 34(11), 2012. 5

[2] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixé.
Tracking Without Bells and Whistles. In CVPR, 2019. 5

[3] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, and Others. Shapenet: An
Information-Rich 3D Model Repository. In arXiv, 2015. 5

[4] Ioana Croitoru, Simion-Vlad Bogolin, and Marius
Leordeanu. Unsupervised Learning from Video to De-
tect Foreground Objects in Single Images. In ICCV, 2017.
5

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR, 2009. 4, 5

[6] Edsger W. Dijkstra. A Note on Two Problems in Connexion
with Graphs. Numerische mathematik, 1(1), 1959. 2, 4

[7] Piotr Dollár and C. Lawrence Zitnick. Structured Forests for
Fast Edge Detection. In ICCV, 2013. 5

[8] Alon Faktor and Michal Irani. Video Segmentation by Non-
Local Consensus Voting. In BMVC, 2014. 5

[9] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In ICCV, 2017. 4



Figure 6. Qualitative results for the mask selection by UnOVOST and by our approach on new classes. We show in this figure masks
extracted from a sequence (from Unseen-VIS-train). First row and fourth row: Masks detected by baseline network MP R-CNN; Second
row and fifth row: Masks selected by UnOVOST [16]; Third row and sixth row: Masks selected by our approach. Our method chooses the
correct masks among the raw detections, while UnoVOST makes several mistakes. For more examples, please refer to the video.

Figure 7. Qualitative results for detected masks of new classes, before and after fine-tuning on our generated masks. We show in
this figure masks detected in still images. First row and third row: Detections by MP R-CNN before fine-tuning; Second row and fourth
row: Detections by MP R-CNN after fine-tuning on our selected masks; The masks generated by our method results in a significantly better
model for the new classes. For more examples, please refer to the video.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In CVPR,
2016. 5

[11] Geoffrey E. Hinton. Products of Experts. In International
Conference on Artificial Neural Networks, 1999. 1

[12] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, and Others. The Ki-
netics Human Action Video Dataset. In arXiv, 2017. 5

[13] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten

Rother, and Piotr Dollár. Panoptic Segmentation. In CVPR,
2019. 5

[14] Xueting Li, Sifei Liu, Shalini De mello, Xiaolong Wang, Jan
Kautz, and Ming-Hsuan Yang. Joint-Task Self-Supervised
Learning for Temporal Correspondence. In NeurIPS, 2019.
5

[15] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature Pyramid
Networks for Object Detection. In CVPR, 2017. 4

[16] Jonathon Luiten, Idil Esen Zulfikar, and Bastian Leibe. Un-



OVOST: Unsupervised Offline Video Object Segmentation
and Tracking. In WACV, 2020. 5, 7

[17] Francisco Massa and Ross Girshick. Maskrcnn-Benchmark:
Fast, Modular Reference Implementation of Instance Seg-
mentation and Object Detection Algorithms in PyTorch.
https://github.com/facebookresearch/
maskrcnn-benchmark, 2018. 4

[18] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A.
Dosovitskiy, and T. Brox. A Large Dataset to Train Con-
volutional Networks for Disparity, Optical Flow, and Scene
Flow Estimation. In ICCV, 2016. 5

[19] Aljoša Ošep, Paul Voigtlaender, Mark Weber, Jonathon
Luiten, and Bastian Leibe. 4D Generic Video Object Pro-
posals. In ICRA, 2020. 4

[20] Anestis Papazoglou and Vittorio Ferrari. Fast Object Seg-
mentation in Unconstrained Video. In ICCV, 2013. 5

[21] Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor Darrell,
and Bharath Hariharan. Learning Features by Watching Ob-
jects Move. In CVPR, 2017. 5

[22] Ilija Radosavovic, P. Dollár, Ross B. Girshick, Georgia
Gkioxari, and Kaiming He. Data Distillation: Towards
Omni-Supervised Learning. In CVPR, 2018. 5

[23] Otilia Stretcu and Marius Leordeanu. Multiple Frames
Matching for Object Discovery in Video. In BMVC, 2015.
5

[24] Zachary Teed and Jia Deng. RAFT: Recurrent All-Pairs
Field Transforms for Optical Flow. In ECCV, 2020. 5

[25] Carles Ventura, Miriam Bellver, Andreu Girbau, Amaia Sal-
vador, Ferran Marques, and Xavier Giro-I-Nieto. RVOS:
End-To-End Recurrent Network for Video Object Segmen-
tation. In CVPR, 2019. 6

[26] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 5

[27] Linjie Yang, Yuchen Fan, and Ning Xu. Video Instance Seg-
mentation. In ICCV, 2019. 6

[28] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi
Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Mueller, R.
Manmatha, and Others. Resnest: Split-Attention Networks.
In arXiv, 2020. 5

[29] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid Scene Parsing Network. In
CVPR, 2017. 5


