
With a Little Help from My Friends:
Nearest-Neighbor Contrastive Learning of Visual Representations

Supplementary Material

A. Pseudo-code
In Algorithm 1 we present the pseudo-code of NNCLR.

Algorithm 1 Pseudocode

f: backbone encoder + projection MLP
g: prediction MLP
Q: queue

for x in loader: # load a minibatch x with n samples
x1, x2 = aug(x), aug(x) # random augmentation
z1, z2 = f(x1), f(x2) # projections, n-by-d
p1, p2 = g(z1), g(z2) # predictions, n-by-d

NN1 = NN(z1, Q) # top-1 NN lookup, n-by-d
NN2 = NN(z2, Q) # top-1 NN lookup, n-by-d

loss = L(NN1, p2)/2 + L(NN2, p1)/2

loss.backward() # back-propagate
update(f, g) # SGD update
update_queue(Q, z1) # Update queue with latest

projection embeddings

def L(nn, p, temperature=0.1):
nn = normalize(nn, dim=1) # l2-normalize
p = normalize(p, dim=1) # l2-normalize

logits = nn @ p.T # Matrix multiplication, n-by-n
logits /= temperature # Scale by temperature

n = p.shape[0] # mini-batch size
labels = range(n)

loss = cross_entropy(logits, labels)

return loss

def NN(z, Q):
z = normalize(z, dim=1) # l2-normalize
Q = normalize(Q, dim=1) # l2-normalize
sims = z @ Q.T
nn_idxes = sims.argmax(dim=1) # Top-1 NN indices
return Q[nn_idxes]

It is possible to use momentum encoder with NNCLR
training. The pseudo-code when momentum encoder is
used is shown in Algorithm 2.

B. Evolution of Nearest-Neighbors
In Figure 1 we show how the nearest-neighbors (NN)

vary as training proceeds. We observe consistently that in
the beginning of training the NNs are usually chosen on the
basis of color and texture. As the encoder becomes better at

Algorithm 2 Pseudocode with Momentum Encoder

f: backbone encoder + projection MLP
f_m: momentum version of (backbone encoder +

projection MLP)
g: prediction MLP
Q: queue
t: tau for momentum encoder

for x in loader: # load a minibatch x with n samples
x1, x2 = aug(x), aug(x) # random augmentation
z1, z2 = f(x1), f(x2) # projections, n-by-d
p1, p2 = g(z1), g(z2) # predictions, n-by-d

zm1, zm2 = f_m(x1), f_m(x2) # projections, n-by-d

NN1 = NN(zm1, Q) # top-1 NN lookup, n-by-d
NN2 = NN(zm2, Q) # top-1 NN lookup, n-by-d

loss = L(NN1, p2)/2 + L(NN2, p1)/2

loss.backward() # back-propagate
update(f, g) # SGD update
update_queue(Q, z_m1) # Update queue with latest

projection embeddings from momentum encoder

f_m = t*f_m + (1 - t) * f # Update momentum
encoder weights

recognizing classes later in training, the NNs tend to belong
to similar semantic classes.

C. SimSiam with Nearest-neighbor as Positive

In this experiment we want to check if it is possible to use
the nearest-neighbor in a non-contrastive loss. To do so we
use the self-supervised framework SimSiam [1], in which
the authors use a mean squared error on the embeddings of
the 2 views, where one of the branches has a stop-gradient
and the other one has a prediction MLP. We replace the stop-
gradient branch with its nearest-neighbor from the support
set. We call this method NNSiam. In Figure 2 we show
how NNSiam differs from SimSiam. We also show how
they both differ from SimCLR and NNCLR. Note that there
is an implicit stop-gradient in NNSiam because of the use
of hard nearest-neighbors. For this experiment, we use an
embedding size of 2048, which is the same dimensionality
used in SimSiam. We train with a batch size of 4096 with
the LARS optimizer with a base learning rate of 0.2. We
find that even with the non-contrastive loss using the nearest

1

Figure 1: Evolution of Nearest-neighbors as training proceeds.

encoderencoder

image

Contrastive Loss

x2x1

z2z1

random augmentations

(a) SimCLR

encoderencoder

image

nearest
neighbor

in support set

Contrastive Loss

x2x1

NN(z1)

z2z1

support
set

random augmentations

(b) NNCLR

z2

encoderencoder

image

MSE Loss

x2x1

random augmentations

predictor

p2

stop-grad

z1

(c) SimSiam

z2

encoderencoder

image

nearest
neighbor

in support set

MSE Loss

x2x1

NN(z1)

z1

support
set

random augmentations

predictor

p2

(d) NNSiam
Figure 2: Comparison of self-supervised methods.

neighbor as positive leads to 1.3% improvement in accuracy
under ImageNet linear evaluation protocol. This shows that
the idea of using harder positives can lead to performance
improvements outside the InfoNCE loss also.

References
[1] Xinlei Chen and Kaiming He. Exploring simple siamese rep-

resentation learning. arXiv preprint arXiv:2011.10566, 2020.
1, 2

Method Positive Top-1 Top-5

SimSiam[1] View 1 71.3 -
NNSiam NN of View 1 72.6 90.4

Table 1: SimSiam with nearest-neighbor as positive.

