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1. Clothing Semantic Information

It is difficult to obtain ground-truth clothing segmen-
tation masks for in-the-wild datasets. Hence, we use
Graphonomy [1], which is an off-the-shelf human cloth-
ing segmentation model that provides reasonably reliable
pseudo-ground truth.

1.1. Clothing Segmentation Masks

Graphonomy has three different models depending on
the granularity of the segmentation mask and we choose the
one with 20 labels, also known as the Universal Model. This
model provides the best clothing segmentation performance
compared to other Graphonomy variants. The different la-
bels are: Background, Hat, Hair, Glove, Sunglasses, Upper-
Clothes, Dress, Coat, Socks, Pants, Jumpsuits, Scarf, Skirt,
Face, LeftArm, RightArm, LeftLeg, RightLeg, LeftShoe and
RightShoe.

During inference, to get more accurate predictions — as
suggested in the original implementation — we use 4 differ-
ent scaling factors for the input image — 0.5,0.75,1.0,1.5 -
to account for different image resolutions. Then, we merge
the outputs for different scaling factors using appropriate
upsample and downsample functions (bilinear) to produce
an output size the same as the original image. For images
more than 1080 x 1080, we use a single scaling factor of 1.0.
We also flip the image horizontally and average the output
predictions of the flipped image with the original one.

1.2. Processing Pseudo Ground-Truth Masks

The generated pseudo ground-truth cannot be directly
used for supervising existing human body estimator net-
works because of incompatibility between Graphonomy’s
output and 3D pose regressor’s training procedure [4].

Graphonomy is not an instance segmentation model,
which means it is hard to differentiate between people in the
image. However, standard human body estimators [3—5] use

DSR-C Labels ‘ Graphonomy Labels
Background Background

LowerClothes Pants, Skirts
UpperClothes Upperclothes, Dress, Coat, Jumpsuits

Hat, Hair, Glove, Sunglasses,
Socks, Scraf, Face, LeftArm, RightArm,
LeftLeg, RightLeg, LeftShoe, RightShoe

MinimalClothing

Table 1: Mapping of DSR-C labels to Graphonomy labels.

a single person during training. To circumvent this problem,
we use 2D keypoints to get a rough estimate of the region
of the person in the image. Furthermore, we add/subtract an
offset of 30 pixels in both = and y direction according to the
maximum/minimum keypoint location.

Due to occlusion or inaccuracies in the prediction, the
spread of pixels for a particular label of Graphonomy may
cover an extremely small part of the image. As DSR-MC
tries to tightly supervise the rendered SMPL body with the
target binary mask, it is important to ensure the target masks
are reliable. Hence, we remove labels that cover less than
60 pixels from the predefined set of five labels (LeftArm,
RightArm, LeftShoe, RightShoe, Face).

There is a one to one mapping from the DSR-MC labels
to Graphonomy labels. The same is not true for DSR-C as
there are several clothing labels. Consequently, for DSR-C,
we define a coarse mapping as per Table 1.

2. Semantic Prior for SMPL

To supervise the human body regressor network with se-
mantic information, we need a term that captures the a pri-
ori probability that describes what parts of the SMPL body
correspond to a particular semantic label. To this end, we
use 2500 clothed human scans from the AGORA dataset [3]
with varied clothing, pose and identity. AGORA contains
clothed 3D people with ground truth SMPL-X bodies fit to
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Figure 1: Clothed Human Scans. Examples of clothed human scans in different clothing, pose and camera views (Columns
1,3,5) along with the corresponding SMPL bodies where each vertex is colored based on the output of the clothing segmen-
tation model [ 1] (Columns 2,4,6) applied on the respective scan images. We only show 3 camera views here.

the scans. We convert SMPL-X fits to SMPL. For each scan,
we render it from 10 different camera views to cover differ-
ent angles and generate scan images. We run Graphonomy
on each of these images to obtain 10 2D clothing segmenta-
tion images for each scan. An illustration of the output from
this process is depicted in Fig. 1. We also render the fit-
ted SMPL model with the known camera parameters to ob-
tain the correspondences between the vertices of the SMPL
body and the pixels in the image.

Given this training data, we can very simply compute
the prior probability of a SMPL vertex having one of the 20
Graphonomy labels. We estimate this by calculating the oc-
currences of a particular label being present at the vertex di-
vided by the total occurrences of other labels—excluding the
Background label. Finally, this gives us the prior per-vertex
probability that a SMPL vertex has given a Graphonomy la-
bel. We also assign a small probability of a vertex being
assigned the background label; this increases robustness to
occlusion. As an additional step, we use the SMPL body
part segmentation to clean the semantic prior. Graphonomy
gives incorrect predictions for some clothed body scan im-

ages and this will affect downstream tasks. Hence, if the
semantic label probability of a “leg” vertex (denoted by
SMPL part segmentation) has a higher probability of be-
ing hand, we set it to zero. This approach helps to avoid
obvious failures when Graphonomy produces incorrect pre-
dictions. Note that a more sophisticated prior model could
also capture spatial correlations of clothing but we did not
find this necessary.

3. Failure Case Analysis

We qualitatively analyse the failure cases using our
method and broadly categorise them into two types: occlu-
sion failures as shown in Fig. 2 and multi-person failures
as shown in Fig. 3. Note that these are also cases where
standard 3D pose estimation methods commonly fail.

First, we observe failures in case of either self-occlusion
or scene occlusion producing unreasonable pose. Hence,
we tried to analyse the training samples with occlusion. As
we can see in Fig. 2, Graphonomy outputs a black patch
(Background class) when an object or the scene is occlud-
ing the person. As DSR-C tries to minimise the negative



Occlusion Failure Cases

Figure 2: Occlusion Failure Analysis Qualitative failure
results in case of occlusion. We show outputs from COCO
and 3DPW in Rows [-2 respectively. Rows 3-4: Similar
occlusion cases present in the training samples.

log probability of a rendered vertex being a particular la-
bel, and the background label has a low probability, occlu-
sions can cause the pose to be incorrect. More complete
labeling of things like backpacks or training with synthetic
occlusion could improve this. Moreover, it can also hin-
der detailed fitting of the body where the labels associated
with DSR-MC are occluded. Additional occlusion handling
techniques could help our approach in such cases.

Furthermore, another failure case occurs when multiple
people are present in a scene. As Graphonomy is not an in-
stance segmentation network, the pseudo ground-truth data
may still contain other people even after using the heuris-
tics to clean them, as described in Section 1.2. This con-
fuses training, resulting in misaligned bodies at inference
time. Figure 3 shows common cases where all the upper
body clothing of multiple people are merged into one seg-
ment and clothing masks of partially visible people in the
background, which affect the quality of the obtained masks.
Our entire method could be improved by better instance-
level clothing segmentation.

Higher quality of Graphonomy masks leads to increased
performance gains in the case of DSR. We demonstrate it
by doing an ablation study using Human3.6M [2] dataset
where the Graphonomy predictions are more reliable be-

Multi-Person Failure Cases

Figure 3: Multi-Person Failure Analysis Qualitative fail-
ure results in case multiple people are present. We show
outputs from COCO and 3DPW in Rows -2 respectively.
Rows 3-4: Similar multi-person failure cases present in the
training samples.

cause of the simpler background and single subject. The
quantitative results of this experiment are reported in the
main paper.

Overall, our performance is affected by the off-the-self
model we use to supervise the clothing semantics of the per-
son. However, improvements over the state-of-the-art show
that even weak supervision of clothing semantics is crucial
for detailed 3D body fits. The success of our approach sug-
gests that more accurate human parsing and clothing seg-
mentation are a good investment for the community.

4. Additional Qualitative Results

We show additional qualitative results comparing our
method with other state-of-the-art methods [3, 5] for
3DPW [6] and COCO [7] which are challenging in-the-wild
benchmarks for 3D human pose and shape estimation. The
results are depicted in Figures 4 and 5. Next to each exam-
ple, we show the corresponding side view. We observe that
our approach produces more accurate pose and shape that
are better aligned with the human in the image than current
SOTA approaches.
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Figure 4: Additional Qualitative Results of 3DPW. From left to right - Input image, SPIN [5], SPIN Sideview, EFT [3],
EFT Sideview, DSR and DSR Sideview results
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Figure 5: Additional Qualitative Results of COCO. From left to right - Input image, SPIN [5], SPIN Sideview, EFT [3],
EFT Sideview, DSR and DSR Sideview results
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