
A. Motion Forecasting Metrics

Distance error metrics are the most commonly used to
compare methods, capturing how close a predicted trajec-
tory (discrete time sequence of states) matches a future ob-
ject track, under Euclidean distance. The most common is
Average Displacement Error (ADE) [1, 24]. Because the
future is inherently stochastic and multi-modal, most mod-
els output a (weighted) set of trajectory hypotheses, and
then a minimal error over the set (of constrained size) is
reported (i.e. minADE [9]). For methods that provide ex-
plicit or implicit future probability distributions, the likeli-
hood of the ground truth future trajectory can be used as
a metric [8, 31, 27, 28]. Framing the problem instead as
one of detection of future locations, Argoverse [9] employs
Miss Rate within 2 meters as their primary metric, which
has the benefit to being tolerant to outliers. A number of
metrics including minADE have been extended for use with
jointly predicted agent trajectories[6].

B. Dataset Splits

The dataset provides 6 different splits of the original set
of 20 second scenarios. The scenarios are first split into
training, validation and test sets. This is done by hashing a
string containing the date of the data capture and the unique
ID of the vehicle used to capture the data. The hashed val-
ues are split into mutually exclusive 70% training, 15% val-
idation, and 15% testing subsets of the 20 second scenarios.
From these 3 subsets we generate examples by extracting
9.1 second windows from the longer 20 second scenarios.
Each 9.1 second window contains 91 time steps at 10Hz -
10 history samples, 1 sample at the current time, and 80
future steps. We extract 5 different sets of windowed ex-
amples from the respective 20 second splits, training, val-
idation, testing, validation interactive, and testing interac-
tive. The training set contains 9.1 second windows starting
at times {0, 2, 4, 5, 6, 8, 10} seconds within the 20 sec-
ond scenarios. The validation and testing sets contain 9.1
second windows starting at times {0, 5, 10} seconds. The
validation interactive and testing interactive sets contain 9
second windows starting at times {4, 5, 6} seconds to focus
on the interactive portion of the scenario. The 5 windowed
sets are included in the published dataset along with the full
20 second training set. Each of the windowed sets contains
a list of objects in the scene to be predicted. The training,
validation, and testing sets contain up to 8 objects per sce-
nario chosen to include at least 2 objects of each type if
available. Selection is biased to include objects that do not
follow a constant velocity model or straight paths. For the
validation interactive and testing interactive sets, only the
mined interactive agent pair objects are included in the list
of objects to predict. In addition, each object to predict has
a difficulty level based on how easily it is predicted by an

LSTM extrapolation model.

C. Metrics Details

Overlap rate (OR) details. A binary indicator is assigned
to each sample alerting of self-overlapping. The average
over the dataset creates the overlap rate. We only con-
sider the highest scoring joint prediction p̃ here. Our metric
counts an overlap with the following criteria: given the joint
predicted trajectories of A agents, an overlap is counted if
the rotated bounding box of any of the A agents overlaps
with any other visible object at any time step within the
prediction interval T . Note that agents not visible at predic-
tion time (due to their later appearance) are not considered
for potential overlaps. Consider Gt = {s̃a,t∀a, gb,t∀b ∈
1 . . . B} where s̃a,t are waypoints from p̃ at time t, and
gb,t are groundtruth waypoints from B nearby environmen-
tal agents, the single overlap indicator is defined as:

µOR(e) =
∑
t

∑
a

∑
s′∈Gt\s̃a,t

1[IOU(b(s̃a,t), b(s
′
t)) > 0]

(2)
where b(.) is a function to derive a 5-dof (x, y, width,
length and heading) bounding box from a waypoint. The
groundtruth bounding box is used for an environmental
agent. For a predicted waypoint sa,t, we derive the head-
ing from the derivative to the previous waypoint and use
the groundtruth bounding box sizes. IOU(·) computes the
intersection-over-union between two 5-dof boxes.

D. Overlap Metric

We use a marginal overlap-based metric with the simple
baseline models to quantify the difficulty and interactivity
in our dataset. We consider a trajectory for an agent to con-
tain an overlap if at any time point, the agent bounding box
overlaps with a ground-truth box at that time. The overlap
rate is the number of agents whose trajectories have over-
laps divided by the total number of predicted agents.

We compute the overlap rate for the constant velocity
model and compare the performance between the regular
split and interactive split of the dataset. For the constant
velocity model, we found that 38.4% of predicted vehicles
in the regular split, and 44.2% of predicted vehicles in the
interactive split have trajectories that overlap with a ground-
truth (Table 5). This shows that the interactive split is more
challenging, and suggests that more interactions between
agents in that split.

E. Conditional Model Details

The model we use for conditional behavior prediction is
based on the baseline model we describe in 5.1. Figure 7
provides an overview diagram of the proposed model. We



Overlap Rate
Val. set Model Vehicle Pedestrian Cyclist

Regular
Const. Vel. 38.4% 29.8% 22.3%

LSTM 27.9% 22.9% 22.1%

Interactive
Const. Vel. 44.2% 30.6% 27.0%

LSTM 36.3% 32.3% 25.6%

Table 5: The interactive split of the data has more over-
laps per scene. Despite the interactive set only requiring
predictions for two agents instead of up to eight agents for
the regular dataset, the split contains more scenes where a
constant velocity model or an LSTM model – neither of
which models other agents – produces at least one over-
lap. Statistics are reported on the validation set for both
dataset splits. The marginal-based overlap metric is used
for both splits so that the rates can be compared across the
splits. Constant velocity model only predicts a single tra-
jectory per agent. For the LSTM model, the highest scoring
trajectory for each agent is used.

Figure 7: Diagram of baseline architecture. An illustra-
tion of the baseline architecture employed for the family of
learned models with a base LSTM encoder for agent states.
The three detachable components are a roadgraph polyline
encoder [14], a traffic state LSTM encoder, and a high-order
interactions encoder following [14]. The trajectories are
predicted through a MLP with min-of-k loss.

use the LSTM encoder and all three enhancements (road-
graph encoding with polylines , traffic signal states encoded
in an LSTM, modeling high-order interactions with a global
interaction graph). To make this model suitable for condi-
tional predictions, we add an early fusion conditional en-
coder similar to [36]. Just like [36], we train the model to
do both conditional and unconditional prediction by pass-
ing in a randomly selected query agent’s ground truth fu-
ture trajectory as conditional query input in 95% of training
samples while providing no conditional query in the other
5%. We generate 6 predictions per agent and evaluate the
KL divergence over the full 8 second future trajectory.

F. Videos
The included videos show visualization of some samples

of scenarios from the dataset including those in Figure 1a
and Figure 1b.
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Figure 8: Precision versus recall curves for increasing number of predictions (K) for the polyline model at 3 seconds for
vehicles across trajectory shape buckets for the standard validation dataset. Recall increases with K but AUC decreases.
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Figure 9: Precision versus recall curves for increasing number of predictions (K) for the polyline model at 5 seconds for
vehicles across trajectory shape buckets for the standard validation dataset.
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Figure 10: Precision versus recall curves for increasing number of predictions (K) for the polyline model at 8 seconds for
vehicles across trajectory shape buckets for the standard validation dataset.


