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Dataset #Clips  #Frames #Instances 3D Occl. Pose Est. Inst. Segm. Depth Est. Type
KITTI[14] 50 22,000 160,000 v v v AD
nuSCENES [7] 1,000 40,000 280,000 Vv AD
BDD100k-MOTS [30] 70 14,000 129,000 v v AD
BDD100k-MOT [30] 1,600 100,000 3,300,000 v AD
Waymo Open [24] 1,150 230,000 2,700,000 Vv AD
TAO [10] 2,907 148,235 175,723 DV
PoseTrack [3] 1,356 46,000 276,000 v DV
MOTS [25] 4 2,862 26,894 v v us
MOT-17 [21] 14 11,235 292,733 v UsS
MOT-20 [11] 8 13,410 1,652,040 v us
VIPER [18] 187 254,064 2,750,000 v v v AD
GTA [19] - 250,000 3,875,000 v v DV
JTA[12] 512 460,800 15,341,242 us
MOTSynth 768 1,382,400 40,780,800 v v (SN

Table 1: Overview of the publicly available datasets for pedestrian detection and tracking. For each dataset, we report the
numbers of clips, annotated frames and instances. We also report the presence of 3D data and occlusion information, as well
as the availability of labels for pose estimation, instance segmentation, and depth estimation. The last column shows the data
type: autonomous driving (AD), diverse (DV) or urban surveillance (US).

1. Overview

In this supplementary, we provide (i) extended version of
the Tab. 1 (dataset comparison), provided in the main paper
(Sec. 2); (ii) additional dataset visualizations and statistics
(Sec. 3); (iii) additional experiments on trade-offs on data
volume vs. diversity (Sec. 4); (iv) implementation details
for all experiments, provided in the main paper (Sec. 5); (v)
MOT?20 benchmark results for each sequence (Sec. 6).

2. Dataset Comparison

Tab. 1 extends Tab. 1 from the main paper. In the table
the most widely used publicly available datasets that con-
tain annotation for the people class are reported. Compared

to real world urban surveillance dataset, MOTSynth has one
order of magnitude more clips, annotated frames and anno-
tated instances. Besides JTA [13], MOTSynth is the only
available dataset that provides 3D pose annotations. Ad-
ditionally, MOTSynth also provides instance segmentation
labels and depth maps. It is important to note that for au-
tonomous driving datasets [14, 7, 30, 24] and TAO [10] the
number of instances is relative to all the classes;

3. Dataset Visualizatons and Statistics

In Fig. | we show examples from the MOTSynth dataset
to demonstrate its variation in terms of weather condi-
tions, lighting conditions, viewpoints, and pedestrian den-
sity. We recorded sequences exhibiting nine different types



Figure 1: Examples from the MOTSynth dataset showing data variety in terms of weather conditions (first row), lighting
condition (second row), viewpoints (third row) and number of people (fourth row). Best viewed on screen.

of weather: clear, extra sunny, cloudy, overcast, rainy, thun-
der, smog, foggy, and blizzard.

In addition, MOTSynth varies in terms of: (i) lighting
conditions, resembling different day-time conditions, such
as sunrise, sunset, evening, dawn and night; (ii) the camera
viewpoint, ranging from ground plane position to bird’s-eye
view, and (iii) density, ranging from few pedestrians to hun-
dreds of pedestrians.

We present a more detailed analysis of MOTSynth in
Fig 2. In Fig. 2a we plot the distribution of the bounding
box heights expressed in pixels. As can be seen, 50% of
the bounding boxes are between 0 and 95 pixels. Only 2%
of them are higher than 613 pixel. This clearly shows that
MOTSynth has been designed specifically for surveillance
applications.

In Fig. 2b we show the distribution of the number of
bounding boxes per frame, ranging between 0 and 125 with
a mean of 29.50 and a standard deviation of 17.12. The
distribution is well balanced as peak values hardly reach a
frequency of 2.5%.

In Fig. 2c, we plot the distance distribution of each
pedestrian computed as the distance between the camera
and the head joint expressed in meters. The average cam-
era distance is 28.49 meters, while the standard deviation is
20.33 meters. Half of the annotations appear in 23m range
from the camera. Again, the peaks of the distribution never
exceed 3% showing good data balance.

In Fig. 2d, we plot pedestrian visibility distribution. It
is calculated by counting the number of not occluded body
joints, i.e., joints that are not obstructed by objects or other
pedestrians and that are thus completely visible. MOTSynth
provide the annotation for 22 body joint, thus, a person is

completely visible only if all his 22 joints are not occluded.
The plot clearly shows that MOTSynth is highly crowded as
the percentage of completely visible pedestrians is less than
20%.

4. Data Volume and Diversity

In the main paper, we discussed the impact of the data
sampling rate based on the Faster R-CNN detector [23].
Here, we provide this analysis for all object detectors we
experiment with in Tab. 2.

YOLOV3 requires 104k images to perform favourably
w.r.t. COCO. Moreover, higher sampling rate is always ben-
eficial both in term of AP and MODA. For CenterNet, the
sampling rate does not impact the AP. For MODA, on the
other hand, higher data volume seems to be beneficial.

It is interesting to note that CenterNet is able to surpass
COCO training with only 17k images. Moreover, it is clear
that visual diversity is crucial as split 4 with 1/60 sampling
rate (17k images) surpasses the split 3 with 1/10 sampling
rate (52k images).

Results on Faster R-CNN are even more evident. With
only 9k images we obtain higher AP w.r.t. real data training.
However, results seem to saturate with bigger splits. For
both YOLOv3 and Faster R-CNN, split 2 with 1/10 sam-
pling rate (24k frames) and split 3 and 4 with 1/60 sampling
rate (9k and 17k frames respectively) obtain similar perfor-
mance.

This shows that volume and diversity are equally impor-
tant. In general, visual diversity and data volume are equally
important to achieve competitive results as the best perfor-
mance is always obtained when diversity and volume are
maximized.
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Figure 2: Additional statistics of the MOTSynth dataset. Each distribution is calculated considering all pedestrians with at

least one visible joint.

5. Implementation Details
5.1. Object Detection Experiments

YOLOv3. For YOLOV3, we used Darknet backbone [22].
We trained our model on MOTSynth for 200,000 itera-
tions using the batch-size of 16. We resize input images
to 608 x 608. We used the Ultralytics implementation [2]
with default hyperparameters. For the evaluation, we used
a confidence threshold of 0.4 when testing on MOT17 and
MOT?20.

CenterNet. For CenterNet, we used DLA-34 back-
bone [29] and used used the official implementation of Cen-
terNet [1]. We trained on MOTSynth for 100, 000 iterations
using batch size 32 (we used two GPUs). During the infer-
ence, we used a confidence threshold of 0.3 when testing on
MOT17 and a confidence threshold of 0.1 when testing on
MOT20.

Faster R-CNN and Mask R-CNN. For Faster R-CNN,
we use a ResNet50 [16] backbone with FPN [20] (Detec-
tron2 [15] implementation). We train models on MOTSynth
for 35, 000 iterations and use default Detectron2 hyperpa-
rameters. To avoid overfitting, we freeze all the backbone

blocks except for the last one. For fine-tuning, we follow [4]
and train our models for 30 additional epochs on the respec-
tive dataset. Similarly, we follow the same training scheme
and use the same hyperparameters for Mask R-CNN.

5.2. Person Re-Identification Experiments

For RelD, we follow [8]: we freeze all CNN layers and
pre-train the fully connected layers for 5 epochs. We then
train our entire models for 55 additional epochs using Adam
optimizer (citation needed) and a learning rate of 0.004. We
resize images to 128256 and use random cropping and flip-
ping data augmentation techniques.

5.3. Multi-Object Tracking Experiments

MOT. For CenterTrack [32], we follow the training
schemes explained in Section 4.4 of the main paper. We
fine-tune our network for 30 epochs for MOT17 and 70
epochs for the MOT20 dataset for the fine-tuning experi-
ments. We train and evaluate our models using the same hy-
perparameters as reported by [32]. For Tracktor [4], we fol-
low the setting described for Faster R-CNN and RelD, as no
additional training is required: Tracktor leverages bounding
box regression head of Faster R-CNN detector, trained on
static images.



Dataset ‘ Split ‘ Sampling rate | frames ‘ AP ‘ MODA
COCO - - 118k | 69.76 | 62.02

| 1:60 2k | 51.15 | 45.71

1:10 13k | 62.66 | 52.36

2 5 1:60 4k | 53.86 | 47.49
S | MOTSynth 1:10 24k | 63.08 | 56.67
9 3 1:60 9k | 62.10 | 51.20
1:10 52k | 63.13 | 60.60

4 1:60 17k | 62.59 | 58.66

1:10 104k | 71.90 | 64.51

COoCo - - 118k | 67.01 | 44.38

| 1:60 2k | 61.18 | 39.06

= 1:10 13k | 61.82 | 49.34
2 ) 1:60 4k | 61.45 | 4454
& | MOTSynth 1:10 24k | 6232 | 54.90
5 3 1:60 Ok | 6222 | 53.04
1:10 52k | 62.45 | 55.82

4 1:60 17k | 70.15 | 51.75

1:10 104k | 70.68 | 57.39

COoCo - - 118k | 76.68 | 53.86

| 1:60 2k | 70.00 | 42.90

Z 1:10 13k | 76.80 | 39.02
O ) 1:60 4k | 7027 | 4454
& | MOTSynth 1:10 24k | 7747 | 50.62
2 3 1:60 Ok | 7732 | 51.46
& 1:10 52k | 78.30 | 49.75
4 1:60 17k | 7778 | 3372

1:10 194k | 78.98 | 54.96

Table 2: The effect of the density of sampled data. Sparser
sampling increases the diversity. As can be seen, we can
bridge the gap syn-to-real even when using smaller MOT-
Synth subsets if we ensure that training images are diverse.

MOTS. We adapt our Mask R-CNN model, trained on
MOTSynth, by using bounding box regression mechanism
for tracking and mask segmentation head provides segmen-
tation masks (Mask R-CNN Tracktor ()). For all exper-
iments and the benchmark submission, we use the same
RelD network and hyperparameters as reported in [4].

6. Detailed Benchmark Results

In Tab. 3 we present the detailed MOT20 benchmark
results for each sequence and analyze how Tracktor and
CenterTrack (trained only on MOTSynth) compare with the
state-of-the-art trackers in extremely crowded scenes. In
addition to published models, we train and evaluate Center-
Track on MOT20 (denoted with }), following the training
procedure of [32].We are interested in comparing existing
models trained on different datasets. Therefore, we use the
default CenterTrack hyperparameters.

We observe that in sequence MOT20-04, Tracktor-
MOTSynth and CenterTrack-MOTSynth are not on-par with
Tracktorv2, MPNTrack and LPC. This is likely because
the sequences with near-bird’s-eye viewpoints (similar to
MOT20-04) are rare in MOTSynth dataset. However, in
all other MOT?20 sequences, Tracktor and CenterTrack only
trained on synthetic data outperform Tracktorv2 with a sig-

Method |MOTA 1 MOTP 1 IDFI1 FP| FN| IDS|
Tracktor-MOTSynth 50.7 75.5 42.6 7383 125803 1963
« | CenterTrack-MOTSynth | 41.7 74.5 38.7 15154 142557 2152
g CenterTrack® [32] 54.9 81.1 437 2187 118918 2641
& | Tracktorv2 [4] 72.7 80.1 654 2855 71164 739
Q | MPNTrack [6] 77.0 79.6 71.2 7459 55204 506
= LPC [9] 75.7 80.6 75.7 4180 61864 648
SORT20 [5] 59.5 81.0 56.7 3206 106117 1643
Tracktor-MOTSynth 355 73.9 337 4594 80171 871
o | CenterTrack-MOTSynth |  40.8 71.8 35.3 12448 64330 1748
g CenterTrack® [32] 26.4 75.9 29.0 17481 78371 1881
g Tracktorv2 [4] 30.1 78.8 33.2 1745 90509 512
Q | MPNTrack [6] 36.0 77.1 39.8 4831 79649 425
= LPC [9] 353 71.7 43.2 3503 81891 499
SORT20 [5] 23.7 73.1 29.5 12309 87352 1640
Tracktor-MOTSynth 52.5 71.5 509 509 15009 194
| CenterTrack-MOTSynth | 53.5 74.6 46.3 3082 11785 539
g CenterTrack® [32] 45.2 80.9 419 1101 16728 303
& | Tracktorv2 [4] 50.1 81.1 49.6 252 16127 146
Q | MPNTrack [6] 574 79.5 59.9 906 13061 120
= LPC [9] 50.8 79.3 589 229 15921 124
SORT20 [5] 48.5 77.6 473 1032 15666 360
Tracktor-MOTSynth 294 732 33.5 3447 50831 439
« | CenterTrack-MOTSynth |  24.6 68.7 314 16382 40602 1433
g CenterTrack® [32] 9.0 73.9 258 19736 49828 948
& | Tracktorv2 [4] 21.0 78.8 272 2078 58830 251
Q | MPNTrack [6] 259 71.3 36.1 3757 53470 159
= LPC [9] 25.8 76.3 374 3814 53380 291
SORT20 [5] 13.1 70.9 242 10974 55559 827

Table 3: Per-sequence benchmark results on MOT20.

‘Method ‘MOTAT IDFlT‘ FP| FN| IDS|
Tracktor-MOTSynth 56.9 56.9 |20852 220273 2012
Tracktor-MOTSynth + FT 59.1 58.8 |22231 206062 2323
Tracktor [4] 53.5 52.3 12201 248047 2072
Tracktorv2 [4] 56.3 55.1 | 8866 235449 1987
% CenterTrack-MOTSynth 59.7 52.0 39707 181471 6035
i | CenterTrack-MOTSynth + FT | 65.1 57.9 11521 180901 4377
CenterTrack [32] 61.5 59.6 |14076 200672 2583
Lif T [17] 60.5 65.6 | 14966 206619 1189
LPC [9] 59.0 66.8 23102 206948 1122
MPNTrack [6] 58.8 61.7 17413 213594 1185
o | CorrTracker [26] 76.5 73.6 29808 99510 3369
£ | FairMOTV2 [31] 73.7 72.3 27507 117477 3303
& | TraDeS [28] 69.1 63.9 |20892 150060 3555
Table 4: Detailed Benchmark results on MOT17.
‘Method ‘MOTAT IDFIT‘ FP| FN| IDS|
Tracktor-MOTSynth 437 39.7 | 15933 271814 3467
Tracktor-MOTSynth + FT 56.5 52.8 | 11377 211772 1995
Tracktorv2 [4] 52.6 527 | 6930 236680 1648
% CenterTrack-MOTSynth 39.7 372 | 47066 259274 5872
£ | CenterTrack-MOTSynth + FT | 419 38.2 | 36594 258874 5313
MPNTrack [6] 57.6 59.1 | 16953 201384 1210
LPC [9] 56.3 62.5 | 11726 213056 1562
SORT20 [5] 427 451 | 27521 264694 4470
o | IDMOTGNN [27] 67.1 67.5 | 31913 135409 3131
£ | CorrTracker [26] 652  69.1 | 79429 95855 5183
& | FairMOTV2 [31] 61.8 67.3 103440 88901 5243

Table 5: Detailed Benchmark results on MOT?20.

nificant margin and are on-par with the state-of-the-art.
Fine-tuning these models on MOT20 further improves their
performance, as reported in Section 4.6 of the paper. These



experiments indicate that top-performing tracking models
can be trained on synthetic data even in extremely dense
scenarios.
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