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1. Additional Visualization

We further provide additional visualization results for the
decisions made by the gate and the pose estimation results
in Fig. 1 for (a) Penn Action dataset and (b) Sub-JHMDB
dataset. In general, for relatively static GOP, e.g. (i), (ii),
(iv) and (v) in Fig. 1, the gate is only activated for a frac-
tion of P-frames, which are often the frames with relatively
large motion compensated residuals. Furthermore, for mo-
tions captured by the non-activated P-frames, even with-
out any input information from the fully decoded frames,
our Motion Adaptive Pose Net could still derive accurate
pose sequences, as shown in the first half of the GOP (v).
The arm naturally folds along with the moving-up of body
joints through the pull-up exercise. This indicates that the
motion compensated features could serve as a qualitative
proxy for the accurate features that are extracted from the
actual decoded frames. As shown in this visualization, the
freely-available motion could be efficiently employed to in-
ject effective motion information for accurate pose estima-
tion, which coincides with our motivation to employ those
efficient motion warped features for fast pose estimation.

While for GOP contains more pose variations like (iii)
and (vi), the macroblock based motion vector could often
be less accurate, leading to more motion compensated er-
rors. In this scenario, the gate will be activated more often
as indicated in GOP (iii) and (vi). In addition to that, no-
tice our Residual Driven Dynamic Gate activates less often
for the first half of the GOP, which corresponds to the setup
postures in golf/baseball, while it activates more frequently
in the second half, corresponding to the ball striking phase.
Given that the ball striking phase often contains faster and
more violent motions compared to the setup stage, the mac-
roblock based motion field is often less accurate and there-
fore the Residual Driven Dynamic Gate determines to ex-
tract features from the frames more actively. This observa-
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tion also validates our motivations to design the computa-
tionally light dynamic gate based on the information-rich
motion compensated residuals.

To further investigate the mechanism of the Residual
Driven Dynamic Gate, we plot the activation rates w.r.t dif-
ferent activity class in Penn Action in Figure 2. The more
dynamic activities like tennis, jumping jacks and bowling
requires significantly more accurate features from the de-
coded frame compared to the static activities like push ups
and strum guitars. This observations further verifies the ef-
fectiveness of the Residual Driven Dynamic Gate.

2. Implementation Details

We prepare the dataset using the publicly available FFm-
peg [2]. Following [5], we adopt the MPEG-4 format to
compress the videos and then retrieve the compressed in-
formation including Motion Vector and Residuals.

Following [3, 7, 4], We crop the I-frame, P-frame, mo-
tion vectors and the residual errors using the provided
bounding box for Penn Action dataset. While for Sub-
JHMDB, we generate the bounding boxes from the puppet
mask following [3]. Each frame from a GOP shares one
unique bounding box, which is the mean bounding box of
the I-frame from the current GOP and the next GOP. This
design ensures that our model could be readily deployed to
the real world applications without considering human de-
tection from compressed streams and also further reduces
the computation complexity, as the per-frame human de-
tection is no longer needed. The cropped frames are then
resized to 256 x 256 to input to the model. Note that the
motion vector stores the offset of the matching blocks be-
tween the current P-frame and its previous frame. When
cropping is performed, we accordingly modify the offset,
which equals to change the reference coordinate from the
full frame to the cropped frame.

Random augmentation is adopted during training. Other
than the traditional techniques like random flipping, rota-
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Figure 1. We visualize the decisions of the Dynamic Gate along with the estimated poses for (a) Penn Action and (b) Sub-JHMDB following
the same notation as in our main paper. The proposed Dynamic Gate develops a policy to perform feature extractions only for fraction
of frames when the GOP contains relatively static sequences while rely more heavily on the accurate features when the pose sequences is
dynamic. As depicted in the figure, the frames with faster and more violent motions often come with larger compensation error due to the
inaccurate block based motion estimation. Therefore, the decisions of whether to exploit the fully decoded frames for feature extraction
could be efficiently determined based on the motion compensated residuals, which explicitly measures the reliability of the motion fields.
Furthermore, noticed that in the first half of GOP (v), although no accurate features is provided to our model, our Motion Adaptive Pose
Net could still accurately derive the poses for those skipped frames in the pull-up exercise, which also verifies the efficacy of the proposed

motion compensated features for fast pose estimations.
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Figure 2. Activity Specific Activation Rate on Penn Action. The
most frequently activated activities (tennis forearm) requires twice
as many as p frame features compared to the least activated activ-
ities (push up and strum guitar).

tion and scaling following [3, 4, 7], we randomly select
one frames from the first & frames within the GOP as the
I-frame, which is made possible as we retrieve the relative
motion vectors and motion compensated residuals instead
of back-tracing them to the initial I-frame as [5]. We use
k = 6 in our experiments. Note that for the motion vectors,
other than the traditional augmentation operations, we need
to again perform the change of the reference as in cropping.

We employ ResNet18 as our frame encoder in most ex-
periments as it offers comparable accuracy with signifi-

cantly less computation, as shown by [7] and our compar-
isons in Table 3 from main paper. We set the hidden di-
mension of the ConvLSTM dp;qqen to 64 to balance the
computation complexity and the performance of the mod-
els based on the validation results. Similarly, we fix the
channels of deconvolution layers dgecony to 64. With this
design, we allocate most of the computations to the ResNet
based encoder following the design philosophy of Simple
Baseline [6]. As a comparison, the ResNet18 encoder costs
around 4.7 GFLOPs computation, while the decoder only
costs 0.72 GFLOPs. Noticed that our pipeline is compati-
ble with any single frame pose estimator. We adopted Sim-
ple Baseline [6] structure to maximize the computation sav-
ings from the encoding process, which could be dynami-
cally skipped based on the decision of the Residual Driven
Dynamic Gate. Following [4, 7], we use the MPII [1] pre-
trained ResNet encoder to initialize our model.
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