
Appendix
In this appendix, §A contains further ablations for Kinet-

ics (§A.2) & ImageNet (§A.3), §C contains an analysis on
computational complexity of MHPA, and §B qualitative ob-
servations in MViT and ViT models. §D contains additional
implementation details for: Kinetics (§D.1), AVA (§D.2),
Charades (§D.3), SSv2 (§D.4), and ImageNet (§D.5).

A. Additional Results
A.1. Results: Kinetics-700 Classification

model pretrain top-1 top-5 GFLOPs×views Param
SlowFast 16×8 +NL [35] K600 71.0 89.6 234×3×10 59.9
MViT-B, 16×4 - 71.2 90.0 70.5×1×5 36.8
MViT-B-24, 32×3 - 74.0 91.7 236×1×5 52.9

Table A.1. Comparison with previous work on Kinetics-700.

Kinetics-700 [13] is the largest version of Kinetics with
522k training videos. Results are in Table A.1. We train
MViT from-scratch, without any pre-training. MViT-B,
16×4 achieves 71.2% top-1 accuracy already outperforming
the best previous SlowFast [35] model. We further train a
deeper 24-layer model with longer sampling, MViT-B-24,
32×3, which achieves 74.0% top-1 accuracy.

A.2. Ablations: Kinetics-400 Classification

This indicates that a naïve application of ViT to video
does not model temporal information, and the temporal po-
sitional embedding in ViT-B seems to be fully ignored. We
also verified this with the 79.3% ImageNet-21K pre-trained
ViT-B of Table 4, which has the same accuracy of 79.3% for
shuffling test frames, suggesting that it implicitly performs
bag-of-frames video classification in Kinetics.

variant [N1, N2] FLOPs (G) Mem (G) Acc
ViT-B [12, 0] 179.6 16.8 68.5
2-scale ViT-B, Q pool [6, 6] 111.1 (−68.5) 9.8 (−7.0) 71.0 (+1.5)
ViT-B, K,V pool [12, 0] 148.4 (−31.2) 8.9 (−7.9) 69.1 (+0.6)

Table A.2. Query (scale stage) and Key-Value pooling on ViT-
B. Introducing a single extra resolution stage into ViT-B boosts
accuracy by +1.5%. Pooling K,V provides +0.6% accuracy. Both
techniques allow dramatic FLOPs/memory savings.

Two scales in ViT. We provide a simple experiment that
ablates the effectiveness of scale-stage design on ViT-B. For
this we add a single scale stage to the ViT-B model. To
isolate the effect of having different scales in ViT, we do
not alter the channel dimensionality for this experiment. We
do so by performing Q-Pooling with sQ ≡ (1, 2, 2) after 6
Transformer blocks (cf. Table 3). Table A.2 shows the results.
Adding a single scale stage to the ViT-B baseline boosts accu-
racy by +1.5% while deceasing FLOPs and memory cost by
38% and 41%. Pooling Key-Value tensors reduces compute
and memory cost while slightly increasing accuracy.

positional embedding Param (M) Acc
(i) none 36.2 75.8
(ii) space-only 36.5 76.7
(iii) joint space-time 38.6 76.5
(iv) separate in space & time 36.5 77.2

Table A.3. Effect of separate space-time positional embedding.
Backbone: MViT-B, 16×4. FLOPs are 70.5G for all variants.

Separate space & time embeddings in MViT. In Ta-
ble A.3, we ablate using (i) none, (ii) space-only, (iii) joint
space-time, and (iv) a separate space and time (our default),
positional embeddings. We observe that no embedding (i)
decays accuracy by -0.9% over using just a spatial one (ii)
which is roughly equivalent to a joint spatiotemporal one (iii).
Our separate space-time embedding (iv) is best, and also has
2.1M fewer parameters than a joint spacetime embedding.

T × τ cT×cH×cW sT×sH×sW FLOPs Param Acc
8×8 1×4×4 1×4×4 69.4 36.5 74.5
8×8 1×7×7 1×4×4 69.6 36.5 75.6
8×8 3×7×7 1×4×4 70.5 36.5 75.9

16×4 3×7×7 2×4×4 70.5 36.5 77.2
32×2 3×7×7 4×4×4 70.5 36.5 77.2
32×2 7×7×7 4×4×4 70.5 36.5 77.3

Table A.4. Input sampling: We vary sampling rate T × τ , the size
c=cT×cH×cW and stride of s=sT×sH×sW the cube1 layer that
projects space-time cubes. Cubes with temporal extent cT > 1 are
beneficial. Our default setting is underlined.

Input Sampling Rate. Table A.4 shows results for different
cubification kernel size c and sampling stride s (cf. Table 2).
We observe that sampling patches, cT = 1, performs worse
than sampling cubes with cT > 1. Further, sampling twice
as many frames, T= 16, with twice the cube stride, sT = 2,
keeps the cost constant but boosts performance by +1.3%
(75.9%→ 77.2%). Also, sampling overlapping input cubes
s < c allows better information flow and benefits perfor-
mance. While cT > 1 helps, very large temporal kernel size
(cT = 7) does not further improve performance.

variant [N2, N3, N4, N5] FLOPs Param Mem Acc
V1 [2, 6, 6, 2] 90.2 29.5 11.0 76.3
V2 [2, 4, 6, 4] 86.9 42.8 10.3 75.9
V3 [2, 4, 8, 2] 88.3 32.2 10.5 76.6
V4 [2, 2, 8, 4] 85.0 45.5 9.7 76.7
V5 [1, 2, 11, 2] 83.6 36.5 9.1 77.1
V6 [2, 2, 10, 2] 86.4 34.9 11.3 76.9

Table A.5. Scale blocks: We ablate the stage configuration as the
number of blocks N in stages of MViT-B (i.e. where to pool Q).
The overall number of transformer blocks is constant with N=16.

Stage distribution. The ablation in Table A.5 shows the
results for distributing the number of transformer blocks in
each individual scale stage. The overall number of trans-
former blocks, N=16 is consistent. We observe that having
more blocks in early stages increases memory and having
more blocks later stages the parameters of the architecture.
Shifting the majority of blocks to the scale4 stage (Variant
V5 and V6 in Table A.5) achieves the best trade-off.
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Figure A.4. Accuracy/complexity trade-off on K400-val for varying # of inference clips per video. The top-1 accuracy (vertical axis) is
obtained by K-Center clip testing where the number of temporal clips K ∈ {1, 3, 5, 7, 10} is shown in each curve. The horizontal axis
measures the full inference cost per video. The left-sided plots show a linear and the right plots a logarithmic (log) scale.

stride s adaptive FLOPs Mem Acc
none n/a 130.8 16.3 77.6

1×4×4 71.4 8.2 75.9
2×4×4 64.3 6.6 74.8
2×4×4 X 83.6 9.1 77.1
1×8×8 X 70.5 6.8 77.2
2×8×8 X 63.7 6.3 75.8

Table A.6. Key-Value pooling: Vary stride s = sT ×sH×sW , for
pooling K and V . “adaptive” reduces stride w.r.t. stage resolution.

Key-Value pooling. The ablation in Table A.6 analyzes the
pooling stride s = sT × sH × sW , for pooling K and V
tensors. Here, we compare an “adaptive” pooling that uses a
stride w.r.t. stage resolution, and keeps the K,V resolution
fixed across all stages, against a non-adaptive version that
uses the same stride at every block. First, we compare the
baseline which uses no K,V pooling with non-adaptive
pooling with a fixed stride of 2×4×4 across all stages: this
drops accuracy from 77.6% to 74.8 (and reduces FLOPs
and memory by over 50%). Using an adaptive stride that is
1×8×8 in the scale1 stage, 1×4×4 in scale2, and 1×2×2 in
scale3 gives the best accuracy of 77.2% while still preserving
most of the efficiency gains in FLOPs and memory.

Inference cost. In the spirit of [33] we aim to provide fur-
ther ablations for the effect of using fewer testing clips for
efficient video-level inference. In Fig. A.4 we analyze the
trade-off for the full inference of a video, when varying the
number of temporal clips used. The vertical axis shows
the top-1 accuracy on K400-val and the horizontal axis the
overall inference cost in FLOPs for different model fami-
lies: MViT, X3D [33], SlowFast [34], and concurrent ViT
models, VTN [84] ViT-B-TimeSformer [8] ViT-L-ViViT [1],
pre-trained on ImageNet-21K.

We first compare MViT with concurrent Transformer-

based methods in the left plot in Fig. A.4. All these methods,
VTN [84], TimeSformer [8] and ViViT [1], pre-train on
ImageNet-21K and use the ViT [28] model with modifica-
tions on top of it. The inference FLOPs of these methods
are around 5-10×higher than MViT models with equivalent
performance; for example, ViT-L-ViViT [1] uses 4 clips of
1446G FLOPs (i.e. 5.78 TFLOPs) each to produce 80.3%
accuracy while MViT-B, 32×3 uses 5 clips of 170G FLOPs
(i.e. 0.85 TFLOPs) to produce 80.2% accuracy. Therefore,
MViT-L can provide similar accuracy at 6.8× lower FLOPs
(and 8.5× lower parameters), than concurrent ViViT-L [1].
More importantly, the MViT result is achieved without exter-
nal data. All concurrent Transformer based works [84, 8, 1]
require the huge scale ImageNet-21K to be competitive, and
the performance degrades significantly (-3% accuracy, see
IN-1K in Fig. A.4 for VTN [84]). These works further report
failure of training without ImageNet initialization.

The plot in Fig. A.4 right shows this same plot with a
logarithmic scale applied to the FLOPs axis. Using this scal-
ing it is clearer to observe that smaller models convolutional
models (X3D-S and X3D-M) can still provide more efficient
inference in terms of multiply-add operations and MViT-B
compute/accuracy trade-off is similar to X3D-XL.

Ablations on skip-connections. Recall that, at each scale-
stage transition in MViT, we expand the channel dimension
by increasing the output dimension of the previous stages’
MLP layer; therefore, it is not possible to directly apply
the original skip-connection design [28], because the input
channel dimension (Din) differs from the output channel
dimension (Dout). We ablate three strategies for this:

(a) First normalize the input with layer normalization
and then expand its channel dimension to match the output
dimension with a linear layer (Fig. A.5a); this is our default.

(b) Directly expand the channel dimension of the input



by using a linear layer to match the dimension (Fig. A.5b).
(c) No skip-connection for stage-transitions (Fig. A.5c).
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Figure A.5. Skip-connections at stage-transitions. Three skip-
connection variants for expanding channel dimensions: (a) first
normalize the input with layer normalization (Norm) and then
expand its channel dimension; (b) directly expand the channel
dimension of the input; (c) no skip-connection at stage-transitions.

method top-1 top-5
(a) normalized skip-connection 77.2 93.1
(b) unnormalized skip-connection 74.6 91.3
(c) no skip-connection 74.7 91.8

Table A.7. Skip-connections at stage-transitions on K400. We
use our base model, MViT-B 16×4. Normalizing the skip-
connection at channel expansion is essential for good performance.

Table A.7 shows the Kinetics-400 ablations for all 3 vari-
ants. Our default of using a normalized skip-connection (a)
obtains the best results with 77.2% top-1 accuracy, while
using an un-normalized skip-connection after channel ex-
pansion (b) decays significantly to 74.6% and using no skip-
connection for all stage-transitions (c) has a similar result.
We hypothesize that for expanding the channel dimension,
normalizing the signal is essential to foster optimization, and
use this design as our default in all other experiments.

backbone recipe Acc
SlowFast R50, 8×8 [34] 77.0
SlowFast R50, 8×8 MViT 67.4
SlowFast R101, 8×8 [34] 78.0
SlowFast R101, 8×8 MViT 61.6

Table A.8. SlowFast models with MViT recipe on Kinetics-400.
The default recipe is using the recipe from the original paper. Ac-
curacy is evaluated on 10×3 views.

SlowFast with MViT recipe. To investigate if our training
recipe can benefit ConvNet models, we apply the same aug-
mentations and training recipe as for MViT to SlowFast in
Table A.8. The results suggest that SlowFast models do not
benefit from the MViT recipe directly and more studies are
required to understand the effect of applying our training-

from-scratch recipe to ConvNets, as it seems higher capacity
ConvNets (R101) perform worse when using our recipe.

A.3. Ablations: ImageNet Image Classification

We carry out ablations on ImageNet with the MViT-B-16
model with 16 layers, and show top-1 accuracy (Acc) as well
as computational complexity measured in GFLOPs (floating-
point operations). We also report Parameters in M(106) and
training GPU memory in G(109) for a batch size of 512.

stride s FLOPs Mem Acc
8×8 7.2 9.0 81.6
4×4 7.8 11.9 82.5
2×2 9.0 13.2 81.8
none 10.4 17.3 82.3

Table A.9. ImageNet: Key-Value pooling: We vary stride sH ×
sW , for pooling K and V . We use “adaptive” pooling that reduces
stride w.r.t. stage resolution.

Key-Value pooling for image classification. The ablation
in Table A.9 analyzes the pooling stride s = sH × sW , for
poolingK and V tensors. Here, we use our default ‘adaptive’
pooling that uses a stride w.r.t. stage resolution, and keeps
the K,V resolution fixed across all stages.

First, we compare the baseline which uses pooling with
a fixed stride of 4×4 with a model has a stride of 8×8: this
drops accuracy from 82.5% to 81.6%, and reduces FLOPs
and memory by 0.6G and 2.9G.

Second, we reduce the stride to 2×2, which increases
FLOPs and memory significantly but performs 0.7% worse
than our default stride of 4×4.

Third, we remove the K,V pooling completely which
increases FLOPs by 33% and memory consumption by 45%,
while providing lower accuracy than our default.

Overall, the results show that our K,V pooling is an
effective technique to increase accuracy and decrease cost
(FLOPs/memory) for image classification.

B. Qualitative Experiments: Kinetics
In Figure A.6, we plot the mean attention distance for all

heads across all the layers of our Multiscale Transformer
model and its Vision Transformer counterpart, at initializa-
tion with random weights, and at convergence after training.
Each head represents a point in the plots (ViT-B has more
heads). Both the models use the exact same weight initial-
ization scheme and the difference in the attention signature
stems purely from the multiscale skeleton in MViT. We ob-
serve that the dynamic range of attention distance is about
4× larger in the MViT model than ViT at initialization it-
self (A.6a vs. A.6b). This signals the strong inductive bias
stemming from the multiscale design of MViT. Also note
that while at initialization, every layer in ViT has roughly the



(a) ViT-B at initialization (b) MViT-B at initialization

(c) ViT-B at convergence (d) MViT-B at convergence

Figure A.6. Mean attention distance across layers at initialization/convergence for Vision Transformer (a)/(c) & Multiscale Vision
Transformers (b)/(d). Each point shows the normalized average attention distance (weighted by the attention scores, with 1.0 being maximum
possible distance) for each head in a layer. MViT attends close and distant features throughout the network hierarchy.

same mean attention distance, the MViT layers have strik-
ingly different mean attention signatures indicating distinct
predilections towards global and local features.

The bottom row of Fig. A.6 shows the same plot for a
converged Vision Transformer (A.6c) and Multiscale Vision
Transformer (A.6d) model.

We notice very different trends between the two models
after training. While the ViT model (A.6c) has a consistent
increase in attention distance across layers, the MViT model
(A.6d) is not monotonic at all. Further, the intra-head varia-
tion in the ViT model decreases as the depth saturates, while,
for MViT, different heads are still focusing on different fea-
tures even in the higher layers. This suggests that some of
the capacity in the ViT model might indeed be wasted with
redundant computation while the lean MViT heads are more

judiciously utilizing their compute. Noticeable is further a
larger delta (between initialization in Fig. A.6a and conver-
gence in A.6c) in the overall attention distance signature in
the ViT model, compared to MViT’s location distribution.

C. Computational Analysis

Since attention is quadratic in compute and memory com-
plexity, pooling the key, query and value vectors have di-
rect benefits on the fundamental compute and memory re-
quirements of the pooling operator and by extension, on
the complete Multiscale Transformer model. Consider an
input tensor of dimensions T ×H ×W and corresponding
sequence length L = T ·H ·W . Further, assume the key,
query and value strides to be sK , sQ and sV . As described



in Sec. 3.1 in main paper, each of the vectors would experi-
ence a spatiotemporal resolution downsampling by a factor
of their corresponding strides. Equivalently, the sequence
length of query, key and value vectors would be reduced by
a factor of fQ, fK and fV respectively, where,

f j = sjT · s
j
H · s

j
W , ∀ j ∈ {Q,K, V }.

Computational complexity. Using these shorter sequences
yields a corresponding reduction in space and runtime com-
plexities for the pooling attention operator. Considering
key, query and value vectors to have sequence lengths L/fk,
L/fq and L/fv after pooling, the overall runtime complex-
ity of computing the key, query and value embeddings is
O(THWD2/h) per head, where h is the number of heads
in MHPA. Further, the runtime complexity for calculating the
full attention matrix and the weighed sum of value vectors
with reduced sequence lengths is O(T 2H2W 2D/fqfhh)
per head. Computational complexity for pooling is

T (P(·; Θ)) = O

(
THW ·D · kT kW kH

sT sW sH

)
,

which is negligible compared to the quadratic complexity
of the attention computation and hence can be ignored in
asymptotic notation. Thus, the final runtime complexity of
MHPA is O(THWD(D + THW/fqfk)).

Memory complexity. The space complexity for storing
the sequence itself and other tensors of similar sizes is
O(THWD). Complexity for storing the full attention ma-
trix is O(T 2H2W 2h/fqfk). Thus the total space complex-
ity of MHPA is O(THWh(D/h+ THW/fqfk)).

Design choice. Note the trade-off between the number of
channels D and the sequence length term THW/fqfk in
both space and runtime complexity. This tradeoff in multi
head pooling attention informs two critical design choices
of Multiscale Transformer architecture.

First, as the effective spatiotemporal resolution decreases
with layers because of diminishing THW/fqfk, the channel
capacity is increased to keep the computational time spent
(FLOPs) roughly the same for each stage.

Second, for a fixed channel dimension, D, higher number
of heads h cause a prohibitively larger memory requirement
because of the (D + h ∗ THW/fqfk) term. Hence, Multi-
scale Transformer starts with a small number of heads which
is increased as the resolution factor THW/fqfk decreases,
to hold the effect of (D+h∗THW/fqfk) roughly constant.

D. Additional Implementation Details
We implement our model with PySlowFast [31]. Code

and models are available at: https://github.com/
facebookresearch/SlowFast.

D.1. Details: Kinetics Action Classification

Architecture details. As in original ViT [28], we use resid-
ual connections [50] and Layer Normalization (LN) [2] in
the pre-normalization configuration that applies LN at the
beginning of the residual function, and our MLPs consist of
two linear layers with GELU activation [53], where the first
layer expands the dimension from D to 4D, and the second
restores the input dimension D, except at the end of a scale-
stage, where we increase this channel dimensions to match
the input of the next scale-stage. At such stage-transitions,
our skip connections receive an extra linear layer that takes
as input the layer-normalized signal which is also fed into
the MLP. In case of Q-pooling at scale-stage transitions, we
correspondingly pool the skip-connection signal.

Optimization details. We use the truncated normal dis-
tribution initialization in [47] and adopt synchronized
AdamW [82] training on 128 GPUs following the recipe
in [101, 34]. For Kinetics, we train for 200 epochs with 2
repeated augmentation [55] repetitions. The mini-batch size
is 4 clips per GPU (so the overall batchsize is 512).

We adopt a half-period cosine schedule [81] of learning
rate decaying: the learning rate at the n-th iteration is η ·
0.5[cos( n

nmax
π) + 1], where nmax is the maximum training

iterations and the base learning rate η is set as 1.6 · 10−3.
We linearly scale the base learning rate w.r.t. the overall
batch-size, η = 1.6·10−3 batchsize

512 , and use a linear warm-up
strategy in the first 30 epochs [42]. The cosine schedule is
completed when reaching a final learning rate of 1.6 · 10−5.
We extract the class token after the last stage and use it as
the input to the final linear layer to predict the output classes.
For Kinetics-600 all hyper-parameters are identical to K400.

Regularization details. We use weight decay of 5·10-2,
a dropout [54] of 0.5 before the final classifier, label-
smoothing [98] of 0.1 and use stochastic depth [59] (i.e.
drop-connect) with rate 0.2.

Our data augmentation is performed on input clips by
applying the same transformation across all frames. To each
clip, we apply a random horizontal flip, Mixup [119] with
α = 0.8 to half of the clips in a batch and CutMix [118] to
the other half, Random Erasing [122] with probability 0.25,
and Rand Augment [22] with probability of 0.5 for 4 layers
of maximum magnitude 7.

For the temporal domain, we randomly sample a clip
from the full-length video, and the input to the network are
T frames with a temporal stride of τ ; denoted as T × τ [34].
For the spatial domain, we use Inception-style [97] cropping
that randomly resizes the input area between a [min, max],
scale of [0.08, 1.00], and jitters aspect ratio between 3/4 to
4/3, before taking an H ×W = 224×224 crop.

Fine-tuning from ImageNet. To fine-tune our ViT-B base-
line, we extend it to take a video clip of T = 8 frames

https://github.com/facebookresearch/SlowFast
https://github.com/facebookresearch/SlowFast


as input and initialize the model weights from the ViT-B
model [28] pre-trained on ImageNet-21K dataset. The posi-
tional embedding is duplicated for each frame. We fine-tune
the model for 30 epochs with SGD using the recipe in [34].
The mini-batch size is 2 clips per GPU and a half-period
cosine learning rate decay is used. We linearly scale the base
learning rate w.r.t. the overall batch-size, η = 10−3 batchsize

16 .
Weight decay is set to 10−4.

D.2. Details: AVA Action Detection

Dataset. The AVA dataset [44] has bounding box annota-
tions for spatiotemporal localization of (possibly multiple)
human actions. It has 211k training and 57k validation video
segments. We follow the standard protocol reporting mean
Average Precision (mAP) on 60 classes [44] on AVA v2.2.

Detection architecture. We follow the detection architec-
ture in [34] to allow direct comparison of MViT against
SlowFast networks as a backbone.

First, we reinterpret our transformer spacetime cube out-
puts from MViT as a spatial-temporal feature map by con-
catenating them according to the corresponding temporal
and spatial location.

Second, we employ a the detector similar to Faster R-
CNN [90] with minimal modifications adapted for video.
Region-of-interest (RoI) features [41] are extracted at the
generated feature map from MViT by extending a 2D pro-
posal at a frame into a 3D RoI by replicating it along the
temporal axis, similar as done in previous work [44, 95, 63],
followed by application of frame-wise RoIAlign [48] and
temporal global average pooling. The RoI features are then
max-pooled and fed to a per-class, sigmoid classifier for
prediction.

Training. We initialize the network weights from the Ki-
netics models and adopt synchronized SGD training on 64
GPUs. We use 8 clips per GPU as the mini-batch size and a
half-period cosine schedule of learning rate decaying. The
base learning rate is set as 0.6. We train for 30 epochs
with linear warm-up [42] for the first 5 epochs and use a
weight decay of 10−8 and stochastic depth [59] with rate
0.4. Ground-truth boxes, and proposals overlapping with
ground-truth boxes by IoU > 0.9, are used as the samples
for training. The region proposals are identical to the ones
used in [34].

Inference. We perform inference on a single clip with
T frames sampled with stride τ centered at the frame that is
to be evaluated.

D.3. Details: Charades Action Classification

Dataset. Charades [92] has ∼9.8k training videos and 1.8k
validation videos in 157 classes in a multi-label classification
setting of longer activities spanning ∼30 seconds on average.
Performance is measured in mean Average Precision (mAP).

Training. We fine-tune our MViT models from the Kinetics
models. A per-class sigmoid output is used to account for
the multi-class nature. We train with SGD on 32 GPUs for
200 epochs using 8 clips per GPU. The base learning rate
is set as 0.6 with half-period cosine decay. We use weight
decay of 10-7 and stochastic depth [59] with rate 0.45. We
perform the same data augmentation schemes as for Kinetics
in §D.1, except of using Mixup.

Inference. To infer the actions over a single video, we spa-
tiotemporally max-pool prediction scores from multiple clips
in testing [34].

D.4. Details: Something-Something V2 (SSv2)

Dataset. The Something-Something V2 dataset [43] con-
tains 169k training, and 25k validation videos. The videos
show human-object interactions to be classified into 174
classes. We report accuracy on the validation set.

Training. We fine-tune the pre-trained Kinetics models. We
train for 100 epochs using 64 GPUs with 8 clips per GPU
and a base learning rate of 0.02 with half-period cosine
decay [81]. Weight decay is set to 10−4 and stochastic
depth rate [59] is 0.4. Our training augmentation is the same
as in §D.1, but as SSv2 requires distinguishing between
directions, we disable random flipping in training. We use
segment-based input frame sampling [75] that splits each
video into segments, and from each of them, we sample one
frame to form a clip.

Inference. We take single clip with 3 spatial crops to form
predictions over a single video in testing.

D.5. Details: ImageNet

Datasets. For image classification experiments, we per-
form our experiments on ImageNet-1K [25] dataset that
has ∼1.28M images in 1000 classes. We train models on the
train set and report top-1 and top-5 classification accuracy
(%) on the val set. Inference cost (in FLOPs) is measured
from a single center-crop with resolution of 2242 if the input
resolution was not specifically mentioned.

Training. We use the training recipe of DeiT [101] and sum-
marize it here for completeness. We train for 100 epochs
with 3 repeated augmentation [55] repetitions (overall com-
putation equals 300 epochs), using a batch size of 4096 in
64 GPUs. We use truncated normal distribution initializa-
tion [47] and adopt synchronized AdamW [82] optimization
with a base learning rate of 0.0005 per 512 batch-size that is
warmed up and decayed as half-period cosine, as in [101].
We use a weight decay of 0.05, label-smoothing [98] of
0.1. Stochastic depth [59] (i.e. drop-connect) is also used
with rate 0.1 for model with depth of 16 (MViT-B-16), and
rate 0.3 for deeper models (MViT-B-24). Mixup [119] with
α = 0.8 to half of the clips in a batch and CutMix [118] to



the other half, Random Erasing [122] with probability 0.25,
and Rand Augment [22] with maximum magnitude 9 and
probability of 0.5 for 4 layers (for max-pooling) or 6 layers
(for conv-pooling).
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