
Supplementary Materials
Revitalizing Optimization for 3D Human Pose and Shape Estimation:

A Sparse Constrained Formulation

Taosha Fan1,2, Kalyan Vasudev Alwala1, Donglai Xiang3,4, Weipeng Xu3,
Todd Murphey2, Mustafa Mukadam1

1Facebook AI Research, 2Northwestern University,
3Facebook Reality Labs, 4Carnegie Mellon University

Abstract
In this supplementary material, we present the proofs of

the propositions in the paper and a comprehensive com-
plexity analysis of the dense unconstrained and sparse con-
strained formulations for 3D human pose and shape estima-
tion, from which we derive an efficient algorithm to compute
the Gauss-Newton direction. In addition, we present more
results of qualitative comparisons and ablation studies to
validate our work. Finally, we provide a more detailed de-
scription of our real-time motion capture framework, the
prior loss of joint states, and how to implement our method
on similar articulated tracking problems.

A. Proofs
A.1. Proof of Proposition 1

In this proof, we show the following two optimization
problems are equivalent:

min
T0,Ω,β

E =

K∑
i=0

1

2
‖ri(T0, Ω, β)‖2, (1)

and

min
{Ti,Ωi,βi}Ki=0

E =

K∑
i=0

1

2
‖ri(Ti, Ωi, βi)‖2 (2)

subject to

Ti =Fi(Tpar(i), βpar(i), Ωi)

,Tpar(i)

[
Ωi Si · βpar(i) + li
0 1

]
,

(3a)

βi = βpar(i). (3b)

In Eqs. (1) and (2), Ti ∈ SE(3) is the rigid body trans-
formation of body part i, and Ωi is the state of joint i,

and Ω , (Ω1, · · · , ΩK) ∈ SO(3)K are the joint states,
and β and βi ∈ RP are the shape parameters, and Fi(·) :
SE(3) × RP × SO(3) → SE(3) is a function that maps
Tpar(i), βpar(i) and Ωi to Ti. Note that Eqs. (1) and (2)
are the dense unconstrained and sparse constrained formu-
lations, respectively, for 3D human pose and shape estima-
tion that are defined in the paper.

From Eq. (3b), if we let β0 = β, then, βi = β for all
i = 1, · · · , K. Thus, Eq. (2) is reduced to

min
{Ti,Ωi,βi}Ki=0

E =

K∑
i=0

1

2
‖ri(Ti, Ωi, β)‖2 (4)

subject to

Ti =Fi(Tpar(i), β, Ωi)

=Tpar(i)

[
Ωi Si · β + li
0 1

]
.

(5)

Next, as mentioned in the paper, if we perform a top-down
traversal of the kinematic tree of the SMPL model and re-
cursively exploit Eq. (5) for each body part i = 1, · · · , K,
then, all of Ti ∈ SE(3) can be represented as a func-
tion of the root pose T0 ∈ SE(3), and the joint states
Ω ∈ SO(3)K , and the shape parameter β ∈ RP , i.e.,

Ti , Ti (T0, Ω, β) (6)

If we use Eq. (6) to cancel out non-root rigid body trans-
formations Ti (1 ≤ i ≤ K), then, each ri(·) in Eq. (4) is
rewritten as a function of T0 ∈ SE(3), and Ω ∈ SO(3)K ,
and β ∈ RP , from which we obtain an optimization prob-
lem of a dense unconstrained formulation

min
T0,Ω,β

E =

K∑
i=0

1

2
‖ri(T0, Ω, β)‖2

that is the same as Eq. (1). Therefore, it can be concluded
that Eqs. (1) and (2) are equivalent. The proof is completed.

1



A.2. Proof of Proposition 2

The proof of proposition 2 is organized as follows: we
present an overview of the steps to compute the Gauss-
Newton direction in Section A.2.1, and show that the steps
for the two formulations result in the same Gauss-Newton
direction in Section A.2.2, and derive a dynamic program-
ming algorithm to solve the quadratic program of the sparse
constrained formulation in Section A.2.3, and analyze the
complexity of the aforementioned steps to compute the
Gauss-Newton direction in Section A.2.4.

A.2.1 Steps to Compute the Gauss-Newton Direction

With similar notation to the paper, we introduce x ,
(T0, Ω, β) ∈ SE(3) × SO(3)K × RP and xi ,
(Ti, βi) ∈ SE(3) × RP . Then Eqs. (1) and (2) can be
rewritten as

min
x

E =

K∑
i=0

1

2
‖ri(x)‖2, (7)

and
min

{xi,Ωi}Ki=0

E =

K∑
i=0

1

2
‖ri(xi, Ωi)‖2 (8)

subject to

xi =

[
Fi(xpar(i), Ωi)

βpar(i)

]
, (9)

respectively. For analytical clarity, we assume with no loss
of generality that the residues ri(x) and ri(xi, Ωi) are Ni×
1 vectors for i = 0, · · · , K.

Following the procedure originally given in the paper, an
overview of steps to compute the Gauss-Newton direction
for the dense unconstrained and sparse constrained formu-
lations is given in Table 1, which will be frequently used in
the rest of this proof.

A.2.2 The Equivalence of the Gauss-Newton Direction

In Table 1, since Steps 2 and 3 are the reformulation of
Step 1, we only need to show that the linearizations of dense
unconstrained and sparse constrained formulations in Step
1, i.e., Eqs. (10) and (12), are equivalent. From Eq. (6), the
rigid body transformation Ti ∈ SE(3) of body part i can
be written as a function of T0, Ω and β. Furthermore, it is
by the definition of ri(·) that

ri(T0, Ω, β) = ri
(
Ti(T0, Ω, β), Ωi, β

)
.

From the equation above, Ji∆x in Eq. (10) can be com-
puted using Ji,1 and Ji,2 in Eq. (12):

Ji∆x = Ji,1

[
∂Ti

∂T0
∆T0 + ∂Ti

∂Ω ∆Ω + ∂Ti

∂β ∆β

β

]
+Ji,2∆Ωi.

(21)

Note that the partial derivatives ∂Ti

∂T0
, ∂Ti

∂Ω and ∂Ti

∂β in the
right-hand side of Eq. (21) are obtained by the recursive
implementation of Eq. (13). Therefore, it can be con-
cluded that Eqs. (10) and (12) are equivalent to each other,
which suggests that the dense unconstrained and sparse con-
strained formulations result in the same Gauss-Newton di-
rection.

A.2.3 Algorithm to Solve Eq. (19)

In Table 1, it is straightforward to follow Steps 1–2 of
the sparse constrained formulation to compute the Gauss-
Newton direction. Next, we need to solve the quadratic pro-
gram of Eq. (19) in Step 3, which is nontrivial. In this sub-
section, we derive a dynamic programming algorithm that
exploits the sparsity and constraints of Eq. (13) such that
the Gauss-Newton direction can be exactly computed.

For notational simplicity, we let par(i), chd(i) and
des(i) be the parent, children and descendants of body part
i in the kinematics tree, and assume i > par(i) for all
i = 1, · · · , K.

First, we define Ei(·) : R6+P → R to be a function of
∆xpar(i) ∈ R6+P in the form of an optimization problem
of {∆xj , ∆Ωj} for j ∈ {i} ∪ des(i)

Ei(∆xpar(i)) ,

min
{∆xj ,∆Ωj}j∈{i}∪des(i)

∑
j∈{i}∪des(i)

[1

2
∆x>j Hj,11∆xj+

∆Ω>j Hj,21∆xj +
1

2
∆Ω>j Hj,22∆Ωj+

g>j,1∆xj + g>j,2∆Ωj

]
(22)

subject to

∆xj = Aj∆xpar(j) + Bj∆Ωj , ∀j ∈ {i} ∪ des(i), (23)

in which ∆xpar(i) ∈ R6+P is given. Furthermore, if
Ej(·) : R6+P → R is defined for all j ∈ chd(i), then, it
is from Eq. (22) that Ei(·) can be reduced to an optimiza-
tion problem of ∆xi and ∆Ωi

Ei(∆xpar(i)) , min
∆xi,∆Ωi

[1

2
∆x>i Hi,11∆xi+

∆Ω>i Hi,21∆xi +
1

2
∆Ω>i Hi,22∆Ωi + g>i,1∆xi+

g>i,2∆Ωi +
∑

j∈chd(i)

Ej(∆xi)
]

(24)

subject to

∆xi = Ai∆xpar(i) + Bi∆Ωi,

in which ∆xpar(i) ∈ R6+P is given. Note that Eq. (24) is
an intermediate procedure that is essential for our dynamic
programming algorithm.



Dense Unconstrained Formulation Sparse Constrained Formulation

Step 1

The linearization of Eq. (7) results in

min
∆x

∆E =

K∑
i=0

1

2
‖Ji∆x + ri‖2, (10)

in which ∆x , (∆T0, ∆Ω, ∆β) ∈ R6+3K+P , ∆T0 ∈
R6, ∆Ω ∈ R3K and ∆β ∈ RP are the Gauss-Newton
directions of x, T0, Ω and β, respectively, and

Ji ,

[
∂ri
∂T0

∂ri
∂Ω

∂ri
∂β

]
∈ RNi×(6+3K+P ) (11)

is the Jacobian of ri(·), and ri ∈ RNi is the residue.

The linearization of Eq. (8) results in

min
{∆xi,∆Ωi}Ki=0

∆E =

K∑
i=0

1

2
‖Ji,1∆xi + Ji,2∆Ωi + ri‖2

(12)
subject to

∆xi = Ai∆xpar(i) + Bi∆Ωi, (13)

in which ∆xi , (∆Ti, ∆βi) ∈ R6+P , ∆Ti ∈ R6,
∆Ωi ∈ R3 and ∆βi ∈ RP are the Gauss-Newton di-
rections of xi, Ti, Ωi and βi, respectively, and

Ji,1 ,

[
∂ri
∂Ti

∂ri
∂βi

]
∈ RNi×(6+P ) (14)

and
Ji,2 ,

∂ri
∂Ωi

∈ RNi×3 (15)

are the Jacobians of ri(·), and

Ai ,

 ∂Fi
∂Tpar(i)

∂Fi
∂βpar(i)

0 I

 ∈ R(6+P )×(6+P ) (16)

and

Bi ,

 ∂Fi
∂Ωi
0

 ∈ R(6+P )×3 (17)

are the partial derivatives of Eq. (13), and ri ∈ RNi is the
residue.

Step 2

Reformulate Eq. (10) as

min
∆x

∆E =
1

2
∆x>H∆x + g>∆x (18)

in which H ,
∑K

i=0 J>i Ji ∈ R(6+3K+P )×(6+3K+P ) is
the Hessian, and g ,

∑K
i=0 J>i ri ∈ R(6+3K+P ) is the

gradient.

Reformulate Eq. (12) as

min
{∆xi,∆Ωi}Ki=0

∆E =

K∑
i=0

[1

2
∆x>i Hi,11∆xi+

∆Ω>i Hi,21∆xi +
1

2
∆Ω>i Hi,22∆Ωi+

g>i,1∆xi + g>i,2∆Ωi

]
(19)

subject to

∆xi = Ai∆xpar(i) + Bi∆Ωi,

in which Hi,11 , J>i,1Ji,1 ∈ R(6+P )×(6+P ), Hi,21 ,

J>i,2Ji,1 ∈ R3×(6+P ), and Hi,22 , J>i,2Ji,2 ∈ R3×3

are the Hessians, and gi,1 , J>i,1ri ∈ R6+P and gi,2 ,
J>i,2ri ∈ R6+P are the gradients.

Step 3

Compute the Gauss-Newton direction from Eq. (18),
which has a closed-form solution

∆x = −H−1g. (20)

Compute the Gauss-Newton direction from Eq. (19),
which can be exactly solved by Algorithm 1.

Table 1: Steps to compute the Gauss-Newton direction for the dense unconstrained and sparse constrained formulations.



Algorithm 1 Solve Eq. (19) and compute the Gauss-
Newton direction

Input: {Hi,11,Hi,21,Hi,22,gi,1,gi,2}Ki=0

Output: {∆xi,∆Ωi}Ki=0 and ∆E0

1: for i = K → 1 do
2: Ni,11 = Hi,11 +

∑
j∈chd(i) Mj,11

3: Ni,21 = Hi,21

4: Ni,22 = Hi,22

5: n1,i = gi,1 +
∑

j∈chd(i) mj,1

6: ni,2 = gi,2

7: ∆Ei =
∑

j∈chd(i) ∆Ej

8: Qi,11 = A>i Ni,11Ai

9: Qi,21 = B>i Ni,11Ai + Ni,21Ai

10: Qi,22 =B>i Ni,11Bi+Ni,21Bi+B>i N>i,21 +Ni,22

11: qi,1 = A>i ni,1

12: qi,2 = B>i ni,1 + ni,2

13: Ki = −Q−1
i,22Qi,21

14: ki = −Q−1
i,22qi,2

15: Mi,11 = Qi,11 −Q>i,21Q
−1
i,22Qi,21

16: m1,i = qi,1 −Q>i,21Q
−1
i,22qi,2

17: ∆Ei = ∆Ei − 1
2q>i,2Q

−1
i,22qi,2

18: end for
19: ∆Ω0 = 0

20: M0 = H0,11 +
∑

j∈chd(0) Mj,11

21: m0 = g0,1 +
∑

j∈chd(0) mj,1

22: ∆E0 =
∑

i∈chd(0) ∆Ei

23: x0 = −M−1
0 m0

24: ∆E0 = ∆E0 − 1
2m>0 M−1

0 m0

25: for i = 1→ K do
26: ∆Ωi = Ki∆xpar(i) + ki

27: ∆xi = Ai∆xpar(i) + Bi∆Ωi

28: end for

Next, suppose that there exists Mj ∈ R(6+P )×(6+P ),
mj ∈ R6+P and ∆Ej ∈ R for all j ∈ chd(i) such that
Ej(∆xi) can be written as

Ej(∆xi) =
1

2
∆x>i Mj∆xi + m>j ∆xi + ∆Ej . (25)

Applying Eq. (25) to Eq. (24), we obtain

Ei(∆xpar(i)) = min
∆xi,∆Ωi

1

2
∆xiNi,11∆xi+

∆Ω>i Ni,21∆xi +
1

2
∆Ω>i Ni,22∆Ωi+

n>i,1∆xi + n>i,2∆Ωi + ∆Ei (26)

subject to

∆xi = Ai∆xpar(i) + Bi∆Ωi,

in which
Ni,11 = Hi,11 +

∑
j∈chd(i)

Mi, (27a)

Ni,21 = Hi,21, (27b)

Ni,22 = Hi,22, (27c)

ni,1 = gi,1 +
∑

j∈chd(i)

mj , (27d)

ni,2 = gi,2, (27e)

∆Ei =
∑

j∈chd(i)

∆Ej . (27f)

Substitute Eq. (13) into Eq. (26) to cancel out ∆xi and sim-
plify the resulting equation to an unconstrained optimiza-
tion problem on ∆Ωi ∈ R3:

Ei(∆xpar(i)) = min
∆Ωi

1

2
∆xpar(i)Qi,11∆xpar(i)+

∆Ω>i Qi,21∆xpar(i) +
1

2
∆Ω>i Qi,22∆Ωi+

q>i,1∆xpar(i) + q>i,2∆Ωi + ∆Ei, (28)

in which
Qi,11 = A>i Ni,11Ai, (29a)

Qi,21 = B>i Ni,11Ai + Ni,21Ai, (29b)

Qi,22 = B>i Ni,11Bi + Ni,21Bi+

B>i N>i,21 + Ni,22, (29c)

qi,1 = A>i ni,1, (29d)

qi,2 = B>i ni,1 + ni,2. (29e)

It is obvious that Eq. (28) has a closed-form solution

∆Ωi = Ki∆xpar(i) + ki, (30)

in which

Ki = −Q−1
i,22Qi,21 and ki = −Q−1

i,22qi,2. (31)

If we use Eq. (30) to eliminate ∆Ωi in Eq. (28), there exists
Mi ∈ R(6+P )×(6+P ), mi ∈ R6+P and ∆Ei ∈ R such that

Ei(∆xpar(i)) =
1

2
∆x>par(i)Mi∆xpar(i)+

m>i ∆xpar(i) + ∆Ei, (32)

in which

Mi = Qi,11 −Q>i,21Q
−1
i,22Qi,21, (33a)



Dense Unconstrained Formulation Sparse Constrained Formulation

Step 1 O
(
N(6 + 3K + P )

)
O
(
K(9 + P )

)
+ O

(
N(9 + P )

)
Step 2 O

(
N(6 + 3K + P )2

)
O
(
N(9 + P )2

)
Step 3 O

(
(6 + 3K + P )3

)
O
(
K(9 + P )2

)
+ O

(
(6 + P )3

)
Total O

(
(6 + 3K + P )3

)
+ O

(
N(6 + 3K + P )2

)
O
(
K(9 + P )2

)
+ O

(
(6 + P )3

)
+ O

(
N(9 + P )2

)
(a)

Dense Unconstrained Formulation Sparse Constrained Formulation

Step 1 O
(
KN

)
O(K) + O(N)

Step 2 O
(
K2N

)
O
(
N
)

Step 3 O(K3) O(K)

Total O(K3) + O
(
K2N

)
O(K) + O

(
N
)

(b)

Table 2: The summary of the computational complexities for the steps to compute the Gauss-Newton direction for the dense unconstrained
and sparse constrained formulations, in which K is the number of joints, P is the number of shape parameters, N is the number of
measurements for all the body parts. Note that the number of shape parameters P is assumed to be varying in (a) and constant in (b).

mi = qi,1 −Q>i,21Q
−1
i,22qi,2, (33b)

∆Ei = ∆Ei −
1

2
q>i,2Q

−1
i,22qi,2. (33c)

Therefore, if there exists Mj ∈ R(6+P )×(6+P ), mj ∈
R6+P and ∆Ej ∈ R for all j ∈ chd(i) such that Eq. (25)
holds, we might further obtain Mi ∈ R(6+P )×(6+P ), mi ∈
R6+P and ∆Ei ∈ R with which Ei(∆xpar(i)) can be written
as Eq. (32).

In the kinematic tree, a body part i at the leaf node has no
children, for which Eq. (27) is simplified to Ni,11 = Hi,11,
Ni,21 = Hi,21, Ni,22 = Hi,22, ni,1 = gi,1, ni,2 = gi,2

and ∆Ei = 0, then, it is possible to recursively compute
Mi ∈ R(6+P )×(6+P ), mi ∈ R6+P and ∆Ei ∈ R for each
i = 1, · · · , K following Eqs. (27), (29) and (33) through
the bottom-up traversal of kinematic tree.

It is by definition that Ω0 is a dummy variable and
∆Ω0 = 0. Thus, if Ei(∆x0) in Eq. (32) is known for each
i ∈ chd(0), Eq. (19) is equivalent to an unconstrained opti-
mization problem on ∆x0 ∈ R6+P :

min
∆x0

1

2
∆x>0 H0,11∆x0 + g>0,1∆x0 +

∑
j∈chd(0)

Ei(∆x0).

From Eq. (32), the equation above is equivalent to

min
∆x0

1

2
∆x>0 M0∆x0 + m>0 x0 + ∆E0 (34)

in which
M0 = H0,11 +

∑
j∈chd(0)

Mj , (35a)

m0 = g0,1 +
∑

j∈chd(0)

mj , (35b)

∆E0 =
∑

i∈chd(0)

∆Ei. (35c)

It is straightforward to show that

∆x0 = −M−1
0 m0 (36)

solves Eq. (34) with

∆E0 = ∆E0 −
1

2
m>0 M−1

0 m0 (37)

to be the expected cost reduction as well as the minimum
objective value of Eq. (19).

At last, we recursively compute {∆xi, ∆Ωi}Ki=1 using
Eqs. (13), (30) and (31) through a top-down traversal of the
kinematics tree, from which the Gauss-Newton direction is
exactly retrieved.

From our analysis, the resulting algorithm to solve
Eq. (19) and compute the Gauss-Newton direction is sum-
marized in Algorithm 1. In the next subsection, we show
that Algorithm 1 scales linearly with respect to the number
of joints.



Dense Unconstrained Formulation Sparse Constrained Formulation

Step 1

(a) It takes O
(
Ni(6 + 3K + P )

)
time to compute

Ji ∈ RNi×(6+3K+P ) in Eq. (11) for each i =
0, · · · , K.

(b) In total, it takes O
(
N(6 + 3K +P )

)
time to com-

pute Ji ∈ RNi×(6+3K+P ) for all i = 0, · · · , K.

(a) It takes O
(
9 + P

)
time to compute Ai ∈

R(6+P )×(6+P ) and Bi ∈ R(6+P )×3 in Eqs. (16)
and (17) for each i = 0, · · · , K. Note that the
bottom of Ai and Bi in Eqs. (16) and (17) are ei-
ther zero or identity matrices, which simplifies the
computation.

(b) It takes O
(
Ni(9 + P )

)
time to compute Ji,1 ∈

RNi×(9+P ) and Ji,2 ∈ RNi×3 in Eqs. (14)
and (15) for each i = 0, · · · , K.

(c) Note that Ji,1, Ji,2, Ai and Bi are intermediates
to compute Ji in Eq. (11) using the chain rule.

(d) In total, it takes O
(
K(9 + P ) + O

(
N(9 + P )

))
time to compute Ji,1, Ji,2, Ai and Bi for all i =
0, · · · , K.

Step 2

(a) It takes O
(
Ni(6 + 3K +P )2

)
to compute J>i Ji ∈

R(6+3K+P )×(6+3K+P ) for each i = 0, · · · , K.

(b) In total, it takes O
(
N(6+3K+P )2

)
time to com-

pute H =
∑K

i=0 J>i Ji ∈ R(6+3K+P )×(6+3K+P )

in Eq. (18).

(a) It takes O
(
Ni(9 + P )2

)
time to compute Hi,11 ∈

R(6+P )×(6+P ), Hi,21 ∈ R3×(6+P ) and Hi,22 ∈
R3×3 in Eq. (19) for each i = 0, · · · , K.

(b) In total, it takes O
(
N(9 + P )2

)
time to compute

Hi,11 ∈ R(6+P )×(6+P ), Hi,21 ∈ R3×(6+P ) and
Hi,22 ∈ R3×3 for all i = 0, · · · , K.

Step 3
(a) In total, it takes O

(
(6+3K+P )3

)
to compute the

matrix inverse of H ∈ R(6+3P+K)×(6+3P+K) and
solve Eq. (20).

(a) It takes O
(
(9 + P )2

)
time to run lines 2-17 and

lines 26-27 in Algorithm 1 for each i = 1, · · · , K.
Note that Ai and Bi in Eqs. (16) and (17) are zero
and identity matrices at the bottom, which can be
exploited to simplify the computation.

(b) It takes O
(
(6 + P )3

)
time to compute the matrix

inverse of M0 ∈ R(6+P )×(6+P ) in line 23 of Al-
gorithm 1.

(c) In total, it takes O
(
K(9 +P )2

)
+O

(
(6 +P )3

)
to

compute the Gauss-Newton direction.

Total
The overall complexity is O

(
(6+3K+P )3

)
+O
(
N(6+

3K + P )2
)
.

The overall complexity is O
(
K(9 + P )2

)
+ O

(
(6 +

P )3
)

+ O
(
N(9 + P )2

)
.

Table 3: The analysis of the computational complexities for the steps to compute the Gauss-Newton direction for the dense unconstrained
and sparse constrained formulations. In this table, K is the number of joints, P is the number of shape parameters, N is the number of
measurements for all the body parts, and Ni is the number of measurements associated with body part i.

A.2.4 Complexity Analysis

In Table 2, we present a short summary of the compu-
tational complexities for each step to compute the Gauss-
Newton direction, and in Table 3, we present a comprehen-

sive analysis of the computational complexities that leads to
results in Table 2. The analysis also proves the complexity
conclusions in Proposition 2.

In Tables 2 and 3, it can be concluded that our sparse
constrained formulation is O(K) times faster for Step 1,



(a) (b) (c)

Figure 1: The CPU time ratio of the SMPL+H and SMPL models to compute the Gauss-Newton direction with (a) different numbers of
measurements and no shape parameters, (b) different numbers of measurements and 10 shape parameters, and (c) different numbers of
shape parameters. The SMPL and SMPL+H models have K = 23 and K = 51 joints, respectively. In Figs. 1 (a) to 1(c), the solid lines
denote the actual CPU time ratio of the SMPL+H and SMPL models that is obtained from the experiments, whereas the dashed lines denote
the expected CPU time ratio that is approximated from the complexity analysis in Tables 2 and 3. It can be seen the impact of the number
of joints is around two orders of magnitude less on our method.

and O(K2) times for Steps 2 and 3 than the dense uncon-
strained formulation in terms of the number of joints K.
In total, our sparse constrained formulation scales linearly
with respect to the number of joints instead of cubically as
the dense unconstrained formulation.

Furthermore, in terms of the number of measure-
ments N , Tables 2 and 3 indicate that the complexity of
our sparse constrained formulation is O

(
N(9 + P )2

)
or

O(N), whereas that of the dense constrained formulation is
O
(
N(6 + 3K + P )2

)
or O(K2N). This suggests that our

sparse constrained formulation has the the number of joints
K and measurements N decoupled in the computation, and
as a result, is much more efficient to handle optimization
problems with more measurements. Note that it is common
in [3, 9, 14, 15, 16, 21] to introduce extra measurements to
improve the estimation accuracy.

B. Ablation Studies
In addition to the results of ablation studies in the paper,

we present a more complete analysis on the impact of the
number of joints K, the number of measurements N , and
the number of shape parameters P on the computation of
the Gauss-Newton direction.

B.1. Experiments

As mentioned in the paper, the CPU time to compute the
Gauss-Newton direction w/ and w/o our method is recorded
for the SMPL and SMPL+H models in the following exper-
iments.

Experiment 1. The number of shape parameters P is 0
and the number of measurements N increases from 120 to
600 for both of the SMPL and SMPL+H models.

Experiment 2. The number of shape parameters P is 10
and the number of measurements N increases from 120 to

600 for both of the SMPL and SMPL+H models.
Experiment 3. The number of shape parameters P in-

creases from 0 to 10, and each joint of the SMPL and
SMPL+H models is assigned with a 2D keypoint, a 3D key-
point, and a part orientation field as measurements.

B.2. Number of the Joints

The CPU time ratio of the SMPL+H and SMPL models
to compute the Gauss-Newton direction is used as the met-
ric to evaluate the impact of the number of joints K. Note
that the SMPL and SMPL+H models have K = 23 and
K = 51 joints, respectively. The CPU time ratio reflects
the additional time induced as a result of the more joints
on the SMPL+H model. The CPU time ratios of the three
experiments are reported in Fig. 1 and discussed as follows:

1. In Experiment 1, there are no shape parameters and the
computation of the Gauss-Newton direction is domi-
nated by the number of measurements N . From Ta-
bles 2 and 3, it is known that our method has O(N)
complexity, which is not related with the number of
joints K, and thus, the expected CPU time ratio with
our method should be

1

1
= 1.

In contrast, the CPU time without our method is ap-
proximately O

(
(3K + 6)2

)
, which suggests an ex-

pected CPU time ratio of(
3× 51 + 6

3× 23 + 6

)2

= 4.49.

The numbers of 1 and 4.49 in the two equations above
are consistent with the results in Fig. 1(a).



Figure 2: The computation of the Gauss-Newton direction with different numbers of measurements and no shape parameters. The results
are (a) the CPU time with and without our method on the SMPL and SMPL+H models, and (b) the speedup of our method on the SMPL
and SMPL+H models, and (c) the speed up of our method on the SMPL model, and (d) the speed up of our method on the SMPL+H model.

Figure 3: The computation of the Gauss-Newton direction with different numbers of measurements and 10 shape parameters. The results
are (a) the CPU time with and without our method on the SMPL and SMPL+H models, and (b) the speedup of our method on the SMPL
and SMPL+H models, and (c) the speed up of our method on the SMPL model, and (d) the speed up of our method on the SMPL+H model.

2. In Experiment 2, there are 10 shape parameters. How-
ever, the analysis is still similar to that of Experiment
1. From Tables 2 and 3, the expected CPU time ra-
tio of the SMPL+H and SMPL models w/ and w/o our
method should be around

1

1
= 1

and (
3× 51 + 6 + 10

3× 23 + 6 + 10

)2

= 3.95,

respectively, which is consistent with the results in
Fig. 1(b).

3. In Experiment 3, the number of measurements N is
proportional to the number of joints of the SMPL and
SMPL+H models. Then, as a result of Tables 2 and 3,
the CPU time w/ and w/o our method to compute the
Gauss-Newton direction should be around O(K) and
O
(
(3K + 6)3

)
, respectively, and the corresponding

expected CPU time can be also approximated by

51

23
= 2.22

and (
3× 51 + 6

3× 23 + 6

)3

= 9.53,

which is consistent with the results in Fig. 1(c).

4. From Fig. 1 and the discussions above, it can be further
concluded that the number of joints has around O(K2)
times less impact on our method, which suggests that
our sparse constrained formulation is more suitable for
human models with more joints.

B.3. Number of the Measurements

The CPU time w/ and w/o our method to compute the
Gauss-Newton direction and the corresponding speedup in
Experiments 1 and 2 are reported in Figs. 2 and 3. It can
be seen from Figs. 2 and 3 that our method has 4.73 ∼
13.91x speedup on the SMPL model and a 12.17 ∼ 43.24x
speedup on the SMPL+H model. Furthermore, no matter
whether there are shape parameters or not, the speedup of
our method is greater as the number of measurements in-
creases, which means that our sparse constrained formula-
tion is more efficient to solve optimization problems with
more more measurements.

B.4. Number of the Shape Parameters

The CPU time w/ and w/o our method to compute the
Gauss-Newton direction and the corresponding speedup in
Experiment 3 are reported in Fig. 4. It can be seen from
Fig. 4 that our method has a 4.92 ∼ 7.78x speedup on
the SMPL model and a 18.63 ∼ 34.18x speedup on the
SMPL+H model, which is consistent with the analysis that
our sparse constrained formulation has better scalability on



Figure 4: The computation of the Gauss-Newton direction with different number of shape parameters. The results are (a) the CPU time
with and without our method on the SMPL and SMPL+H models, and (b) the speedup of our method on the SMPL and SMPL+H models,
and (c) the speed up of our method on the SMPL model, and (d) the speed up of our method on the SMPL+H model.

human models with more joints. On the SMPL+H model,
the CPU time taken to compute the Gauss-Newton direction
without our method is as many as 2.5 ms, which is difficult
to be used in real time considering that most optimization
methods need around 20 ∼ 30 iterations to converge. As
a comparison, our method is significantly faster on both of
the SMPL and SMPL+H models, for which the CPU time
is 0.027 ∼ 0.13 ms. In particular, note that if there are no
shape parameters, our method has a further acceleration of
the computation—this has is important for real-time video
tracking of 3D human pose and shape, in which the shape
parameters that are estimated from the first few frames can
be reused.

C. Qualitative Results

In this section, we present more qualitative comparisons
with SPIN [8] and SMPLify [3] on the Human3.6M, MPI-
INF-3DHP and 3DPW datasets. The results are shown in
Figs. 5 to 7.

D. Real-Time Motion Capture Framework

D.1. Human Detection

The YOLOv4-CSP [2,20] is used for human detection to
make a balance between accuracy and efficiency. The size
of input images for YOLOv4-CSP is 512× 512.

D.2. 2D Keypoint Estimation

The AlphaPose [5] is used for 2D keypoint estimation
with 256 × 192 input images. The following datasets are
used to train AlphaPose.

Human3.6M [4, 6] is a popular dataset for 3D human pose
estimation. Following the standard training-testing protocol
in [17], we use subjects S1, S5-S8 for training.

MPI-INF-3DHP [13] is a multi-view markerless dataset
with 8 training subjects and 6 test subjects. We use subjects
S1-S8 that are downsampled to 10 FPS for training.

COCO [10] is a large-scale dataset for 2D joint detection.
We use the COCO training datasets for training.

MPII [1] is a 2D human pose dataset that is extracted from
online videos. We use the MPII training datasets for train-
ing.

D.3. 3D Keypoint Regression

In our real-time motion capture framework, we use a
light-weight fully connected neural network for 2D-to-3D
lifting. The 3D Keypoint regression network can be re-
garded as a modification of VideoPose3D [18]. From the
3D keypoint regression network, we further obtain the part
orientation field [21] for each body part. We use the train-
ing datasets of Human3.6M [6] and MPI-INF-3DHP [13]
that are downsampled to 10 FPS to train the 3D keypoint
regression network.

E. Prior Loss of Joint States
We use the normalizing flow [7] to describe the joint

state prior loss EΩ,i. The normalizing flow is trained on
the AMASS dataset [12] and has the structure of FC6 →
PReLU → FC6 → PReLU → FC6 → PReLU → FC6 →
PReLU → FC6 whose input is the 6D representation of
rotation. We remark that the normalizing flow structure
above to learn admissible joint states is inspired by the work
of [22].

F. Implementation
F.1. Overview

While originally designed for 3D human pose and shape
estimation, we emphasize that our method can be extended
to any types of articulated tracking problems in computer
vision and robotics [19]. The only requirement is that the
objective can be written as

E =
∑

0≤i≤K

1

2
‖ri(Ti,Ωi,β)‖2, (38)



Figure 5: Qualitative comparisons of our method (second row in pink), SPIN [8] (third row in gray), and SMPLify [3] (fourth row in
purple) on the Human3.6M dataset.

in which K is the number joints, Ti is the pose of body part
i, Ωi is the joint state and β is the shape parameters. Em-
pirically, such a requirement can be satisfied with ease, e.g.,
we might assume that the keypoints selected to calculate the
losses are rigidly attached to a single body part. As a matter
of fact, as long as the objective is in the form of Eq. (38),
the steps to compute the Gauss-Newton direction in Table 1
and the complexity analysis in Tables 2 and 3 hold as well.
Thus, there are no difficulties to implement our method on
practical articulated tracking problems.

F.2. Extract Si and li from the SMPL Model

At the rest pose of the SMPL model [11], it is known that
the joint positions linearly depend on the vertex positions,
and the vertex positions also linearly depend on the shape
parameters β ∈ RP . Thus, we conclude that the joint posi-
tions ti ∈ R3 at the rest pose linearly depend on the shape
parameters, i.e., there exists Ji ∈ R3×P and ci ∈ R3 in the
SMPL model such that ti at the rest pose takes the form of

ti = Ji · β + ci. (39)

Note that joint position ti ∈ R3 is also the translation of

pose Ti =

[
Ri ti
0 1

]
∈ SE(3) where Ri ∈ SO(3) is the

rotation. Moreover, the relative joint position ∆ti ∈ R3

between any connected body parts is constant, and thus, we
obtain ∆ti = ti−tpar(i), in which par(i) denotes the index
of the parent of body part i. Then, joint position ti ∈ R3 at
any poses satisfies

ti = Rpar(i)∆t + tpar(i) = Rpar(i)

(
ti− tpar(i)

)
+ tpar(i).

(40)
In the equation above, Rpar(i) is rotation of pose Tpar(i) ∈
SE(3). Substituting Eq. (39) into Eq. (40) to cancel out ti
and tpar(i), we obtain

ti = Rpar(i)

(
Si · β + li

)
+ tpar(i), (41)

in which
Si = Ji − Jpar(i) ∈ R3×P (42)

and
li = ci − cpar(i) ∈ R3. (43)

It is immediate to show that Si · β + li is the relative joint
position between body parts i and par(i), and thus, the cor-
responding relative pose Tpar(i),i is

Tpar(i),i ,

[
Ωi Si · β + li
0 1

]
, (44)

in which Ωi ∈ SO(3) is the state of joint i.



Figure 6: Qualitative comparisons of our method (second row in pink), SPIN [8] (third row in gray), and SMPLify [3] (fourth row in
purple) on the MPI-INF-3DHP dataset.

Figure 7: Qualitative comparisons of our method (second row in pink), SPIN [8] (third row in gray), and SMPLify [3] (fourth row in
purple) on the MPI-INF-3DHP dataset.



References
[1] Mykhaylo Andriluka, Leonid Pishchulin, Peter

Gehler, and Bernt Schiele. 2D human pose estimation:
New benchmark and state of the art analysis. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2014. 9

[2] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao. YOLOv4: Optimal speed
and accuracy of object detection. arXiv preprint
arXiv:2004.10934, 2020. 9

[3] Federica Bogo, Angjoo Kanazawa, Christoph Lassner,
Peter Gehler, Javier Romero, and Michael J. Black.
Keep it SMPL: Automatic estimation of 3D human
pose and shape from a single image. In European con-
ference on computer vision (ECCV), 2016. 7, 9, 10, 11

[4] Cristian Sminchisescu Catalin Ionescu, Fuxin Li. La-
tent structured models for human pose estimation. In
Procedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 2220–2227, 2011. 9

[5] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu
Lu. RMPE: Regional multi-person pose estimation.
In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 2334–2343, 2017.
9

[6] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cris-
tian Sminchisescu. Human3.6M: Large scale datasets
and predictive methods for 3D human sensing in nat-
ural environments. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 36(7):1325–1339,
2013. 9

[7] Ivan Kobyzev, Simon Prince, and Marcus Brubaker.
Normalizing flows: An introduction and review of cur-
rent methods. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2020. 9

[8] Nikos Kolotouros, Georgios Pavlakos, Michael J
Black, and Kostas Daniilidis. Learning to reconstruct
3d human pose and shape via model-fitting in the loop.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision, 2019. 9, 10, 11

[9] Christoph Lassner, Javier Romero, Martin Kiefel,
Federica Bogo, Michael J. Black, and Peter V. Gehler.
Unite the People: Closing the loop between 3D and
2D human representations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2017. 7

[10] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common ob-
jects in context. In European conference on computer
vision, pages 740–755. Springer, 2014. 9

[11] Matthew Loper, Naureen Mahmood, Javier Romero,
Gerard Pons-Moll, and Michael J. Black. SMPL:
A skinned multi-person linear model. ACM Trans.
Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–
248:16, Oct. 2015. 10

[12] Naureen Mahmood, Nima Ghorbani, Nikolaus F.
Troje, Gerard Pons-Moll, and Michael J. Black.
AMASS: Archive of motion capture as surface shapes.
In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 5442–5451, Oct.
2019. 9

[13] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal
Fua, Oleksandr Sotnychenko, Weipeng Xu, and Chris-
tian Theobalt. Monocular 3D human pose estimation
in the wild using improved cnn supervision. In Pro-
ceedings of the International Conference on 3D Vi-
sion. IEEE, 2017. 9

[14] Dushyant Mehta, Oleksandr Sotnychenko, Franziska
Mueller, Weipeng Xu, Mohamed Elgharib, Pascal
Fua, Hans-Peter Seidel, Helge Rhodin, Gerard Pons-
Moll, and Christian Theobalt. XNect: Real-time
multi-person 3D motion capture with a single RGB
camera. ACM Transactions on Graphics (TOG),
39(4):82–1, 2020. 7

[15] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotny-
chenko, Helge Rhodin, Mohammad Shafiei, Hans-
Peter Seidel, Weipeng Xu, Dan Casas, and Christian
Theobalt. VNect: Real-time 3D human pose estima-
tion with a single RGB camera. ACM Transactions on
Graphics (TOG), 36(4):1–14, 2017. 7

[16] Georgios Pavlakos, Vasileios Choutas, Nima Ghor-
bani, Timo Bolkart, Ahmed A. A. Osman, Dimitrios
Tzionas, and Michael J. Black. Expressive body cap-
ture: 3D hands, face, and body from a single image.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2019. 7

[17] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G
Derpanis, and Kostas Daniilidis. Coarse-to-fine vol-
umetric prediction for single-image 3D human pose.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7025–7034,
2017. 9

[18] Dario Pavllo, Christoph Feichtenhofer, David Grang-
ier, and Michael Auli. 3D human pose estima-
tion in video with temporal convolutions and semi-
supervised training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, 2019. 9

[19] Tanner Schmidt, Richard Newcombe, and Dieter
Fox. DART: dense articulated real-time tracking
with consumer depth cameras. Autonomous Robots,
39(3):239–258, 2015. 9



[20] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. Scaled-YOLOv4: Scaling
cross stage partial network. arXiv preprint
arXiv:2011.08036, 2020. 9

[21] Donglai Xiang, Hanbyul Joo, and Yaser Sheikh.
Monocular total capture: Posing face, body, and hands
in the wild. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 10965–10974, 2019. 7, 9

[22] Andrei Zanfir, Eduard Gabriel Bazavan, Hongyi Xu,
William T Freeman, Rahul Sukthankar, and Cristian
Sminchisescu. Weakly supervised 3d human pose and
shape reconstruction with normalizing flows. In Euro-
pean Conference on Computer Vision, 2020. 9


