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Abstract

In this supplementary material, we first provide additional RS correction results. Furthermore, the effectiveness of our
approach in aggregating the contextual cues of two consecutive RS images is demonstrated. More ablation studies of the
training loss are reported. We also include a video to verify the advantages of our pipeline against the state-of-the-art
method [3] in RS sequence correction. Finally, we summarize the details of our network architecture.

1. More Experimental Results
We provide more qualitative comparisons in Fig. 1. Compared with the off-the-shelf algorithms (e.g. [5, 6, 3]) for RS

correction, our pipeline can produce more reliable results. Specifically, the higher-quality GS images with richer details are
restored, even for foreground objects with more severe RS distortion.

We also give quantitative results using the Learned Perceptual Image Patch Similarity (LPIPS) [4] metric. The smaller the
LPIPS score, the more similar the predicted and the ground truth GS images. As shown in Table 1, one can see our method
achieves superior performance compared with the state-of-the-art method: DSUN [3].

Table 1. Quantitative comparisons of the performance between our approach and the state-of-the-art method in terms of the LPIPS metric.
LPIPS↓

Carla-RS Fastec-RS
DSUN [3] 0.0703 0.1222
SUNet (Ours) 0.0658 0.1205

2. Necessity and Effectiveness of Contextual Aggregation
In Fig. 1(e)&(f) of the main manuscript, we have shown the forward and backward GS images I1→g and I2→g syn-

chronously generated by our network. To better prove that our pipeline can effectively aggregate the contextual cues of two
consecutive RS images, we further report the intermediate results of our network in Fig. 2, i.e., forward/backward undistortion
flows and GS images. The biggest motivation that utilizing contextual aggregation for RS correction is inspired by this obvi-
ous observation, i.e., the first RS image I1 and the second RS image I2 have different contributions to the upper and lower
regions of the corresponding ground truth time-centered GS image IGT respectively, which is exemplified in Fig. 2(e)&(f).
Through symmetric network design, our improved PWC-based architecture can obtain a plausible RS-aware undistortion
flow (i.e., the closer the pixel to the intermediate time τ , the smaller the value of the undistortion flow is generally) for
subsequent accurate RS correction.

As manifested in Fig. 4, the limited information of the second RS image is insufficient to restore the rich texture details
of the target GS image at intermediate time τ . Intuitively, the rear of the car in the backward GS image marked by the red
circle in Fig. 2 (f) is similar to the content restored by DSUN [3] in Fig. 4(d) of the main manuscript. This is because the
extra information of the first frame is not used for detail extraction and fusion, which indicates the necessity of contextual
aggregation. Furthermore, our context-aware cost volume together with the symmetric consistency constraint is proven to
be beneficial in effectively aggregating the contextual cues of two consecutive RS images, thereby resulting in high-quality
time-centered GS images (at time τ ) with more complete visual content.



3. An additional SfM Example
Here, we provide an example of 3D reconstruction to evaluate the performance of the original RS image and our corrected

GS image in SfM. As shown in Fig. 3, direct use of the original RS image leads to erroneous and distorted 3D geometry,
while our method can effectively remove RS artifacts and reconstruct an accurate and consistent 3D scene structure. For
instance, the column becomes vertical and in the correct 3D position after being corrected by our method.

4. Ablation Study on the Training Loss
We report the impact of different combinations of the loss terms in training our model, as shown in Table 2. Note that

removing the perceptual loss Lp will cause the corrected image to appear blurred effect, and the reconstruction loss Lr

is particularly important. Our total loss function yields the best model, which facilitates better removal of RS artifacts to
produce high-quality results.

Table 2. Effectiveness of different combinations of training losses.
PSNR↑ SSIM↑

CRM CR FR CR FR
w/o Lr 28.00 27.90 27.29 0.83 0.81
w/o Lp 29.08 28.95 28.20 0.85 0.84
w/o Lc 29.05 28.94 27.89 0.84 0.82
w/o Ls 29.19 28.07 28.15 0.85 0.83
full loss 29.28 29.18 28.34 0.85 0.84

5. Demo Video
To evaluate the performance of our proposed pipeline on video sequences, we further utilize the RS image dataset from [2],

where each sequence consists of 12 consecutive RS frames with significant image distortions. Additionally, we simulate RS
image sequences in the autonomous driving environment by using the Carla simulator [1]. Based on these unseen scenarios,
we compare our approach with DSUN [3] to evaluate the generalization ability of the model. The RS correction video results
are included in “Demo Video.mp4”. We refer the readers to the video for the full results, and two screenshots are shown
in Fig. 5. It is obvious that, in comparison with our proposed SUNet, DSUN [3] always fails to recover the texture on the
ground. Also, combining with Fig. 6, one can further see that our approach obtains more satisfactory RS correction results
with its excellent generalization ability.

6. Network Details
Fig. 7 displays the architecture of the 6-level feature pyramid extractor network. Note that the bottom level indicates the

original input RS images. Fig. 8 illustrates the undistortion flow estimator network of I1 at the 4-th pyramid level. The
optical flow estimator networks at other levels have similar structures but different feature channels. Note also that the top
level did not adopt the upsampled undistortion flows and calculated the cost volume using the pyramid features of the first
and second RS images directly.
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Figure 1. Qualitative results against baseline methods. Even rows: absolute difference between the corresponding image and the ground
truth GS image. (b-e) GS images predicted by Zhuang et al. [5], Zhuang et al. [6], Liu et al. [3], and our approach, respectively.
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Figure 2. Intermediate examples of our network, including forward/backward undistortion flows and GS images. The upper two rows and
the lower two rows show examples of Carla-RS and Fastec-RS datasets, respectively. Inputting two consecutive RS images I1 and I2, our
approach estimates the forward and backward undistortion flows F1→g and F2→g to predict the forward and backward GS images I1→g

and I2→g , which then are aggregated to produce a time-centered corrected GS image Ig as the ground truth GS image IGT . Note that the
undistortion flow of a pixel closer to the intermediate time of two frames appears as a lighter color (i.e., smaller values), such as the last
rows of (c) and the beginning rows of (d), which accounts for the basic scanline-dependent characteristics of the undistortion flows.
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Figure 3. A 3D reconstruction example using the original RS images and our corrected GS images, respectively.
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Figure 4. Two examples of vulnerability when generalizing DSUN [3] to estimate the time-centered GS image at time τ . One can see that
there are obvious differences between the latent GS images at 3τ

2
and τ in (b2) and (c2), and the GS image at 3τ

2
is relatively similar to

the second RS image. DSUN cannot well recover the details of the GS image (c1) corresponding to time τ (see red circles), although it
can obtain a plausible GS image (b1) corresponding to time 3τ

2
(In fact it also contains missing content that is not particularly striking, see

pink circles). This is because the recovery of the GS image at time τ is more challenging than that at time 3τ
2

. At this more challenging
task, only the limited information of the second frame image is insufficient, and the context information must be fully utilized. Note that
due to the effective context aggregation based on the imaging characteristics of consecutive RS images, our method can reconstruct the
rich details of the latent GS image at time τ , which is also the main contribution of our method.



Figure 5. Two examples extracted from the demo video. DSUN [3] performs worse when dealing with unseen scenes provided by [2],
while our proposed SUNet has excellent generalization performance to produce a coherent video with more detailed textures and fewer
ghosting artifacts.
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Figure 6. An example result from an RS sequence [2] captured by a fast-moving iPhone 3GS camera in the real world.
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Figure 7. The feature pyramid extractor network. The first RS
image I1 and the second RS image I2 are encoded using the
same network. The convolutional layer and the ×2 downsam-
pling layer at each level is implemented using a single convolu-
tional layer with a stride of 2, followed by a ReLU. Each ResNet
layer contains two sequential blocks consisting of: a 2D convo-
lution with a 3 × 3 kernel, a ReLU and a 2D convolution. clt
denotes extracted features of RS image t at level l.
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Figure 8. The undistortion flow estimator network of the first RS
image I1 at pyramid level 4. Inspired by the DenseNet connec-
tions, each convolutional layer is followed by a ReLU except
the last (yellow) one that outputs the undistortion flow. Decon-
volution is then performed to return an upsampled undistortion
flow F 3

1→g for subsequent processing.


