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1. Reproducibility

All experiments are implemented by SpikingJelly [4].
All of the source codes, training logs are available on
GitHub. To maximize reproducibility, we use identical
seeds in all codes.

2. Network Structure Details

Tab. S1 illustrates the details of the network structures
for different datasets. c128k3s1 represents the convolu-
tional layer with output channels = 128, kernel size = 3
and stride = 1. BN is the batch normalization. MPk2s2 is
the max-pooling layer with kernel size = 2 and stride =
2. PLIF is the PLIF spiking neurons layer. DP repre-
sents the dropout layer [9]. FC2048 represents the fully
connected layer with output features = 2048. The
symbol {}* indicates the repeated structure. For exam-
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Dataset Network Structure

*MNIST
{c128k3s1-BN-PLIF-MPk2s2}*2-
DP-FC2048-PLIF-DP-FC100-PLIF-
APk10s10

CIFAR-10 {{c256k3s1-BN-PLIF}*3-
MPk2s2}*2-DP-FC2048-PLIF-
DP-FC100-PLIF-APk10s10

CIFAR10-DVS {c128k3s1-BN-PLIF-MPk2s2}*4-
DP-FC512-PLIF-DP-FC100-PLIF-
APk10s10

DVS128 Gesture {c128k3s1-BN-PLIF-MPk2s2}*5-
DP-FC512-PLIF-DP-FC110-PLIF-
APk10s10

Table S1. Detailed network structures for different datasets.
*MNIST represents MNIST, Fashion-MNIST, and N-MNIST
datasets.

ple, {c128k3s1-BN-PLIF-MPk2s2}*2 means that there are
two {c128k3s1-BN-PLIF-MPk2s2} modules connected se-
quentially. The last layer APk10s10 is the voting layer,
which is implemented by an average-pooling layer with
kernel size = 10 and stride = 10.

3. Training Algorithm to Fit Target Output

After defining the derivative of the spike generative pro-
cess, the parameters of SNNs can be trained by gradient de-
scent algorithms as that in ANNs. Classification, which is
the task in this paper, as well as other tasks for both ANNs
and SNNs, can be seen as optimizing parameters of the net-
work to fit a target output when given a specific input. The
gradient descent algorithm for SNNs to fit a target output is
derived in the main text (Eq. (16) and Eq. (17)), and is as
follows:

Algorithm S1 Gradient Descent Algorithm for SNNs to Fit
Target Output
Require: learning rate ε, network’s parameter θ, total simu-
lating time-steps T , input X = {X0,X1, ...,XT−1}, tar-
get output Y = {Y 0,Y 1, ...,Y T−1}, loss function L =
L(O,Y )
initialize θ
create an empty list S = {}
for t← 0, 1, ...T − 1

inputXt to network, get output spikes St
append St to S = {S0,S1, ...,St−1}

calculate loss L = L(Y ,O)
update parameter θ = θ − ε · ∇θL

Here the loss function L = L(O,Y ) is a distance mea-
surement between Y and S, e.g., the mean squared error
(MSE) in the main text.
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4. Introduction of the Datasets
MNIST The MNIST dataset of handwritten digits com-
prises 28 × 28 gray-scale images which are labeled from 0
to 9. The MNIST dataset includes 60,000 training images
and 10,000 test images.

Fashion-MNIST Similar to the MNIST dataset, the
Fashion-MNIST dataset consists of a training set of 60,000
examples and a test set of 10,000 examples. Each example
in the Fashion-MNIST dataset is a 28×28 gray-scale image
with a label from 0 to 9.

CIFAR-10 The CIFAR-10 dataset consists of 60,000 nat-
ural images in 10 classes, with 6,000 images per class. The
number of the training images is 50,000, and that of the test
images is 10,000.

N-MNIST The Neuromorphic-MNIST (N-MNIST)
dataset is a spiking version of the MNIST dataset recorded
by the neuromorphic sensor. It was converted from MNIST
by mounting the ATIS sensor on a motorized pan-tilt unit
and moving the sensor while recording MNIST examples
on an LCD monitor. It consists of 60,000 training examples
and 10,000 test examples.

CIFAR10-DVS The CIFAR10-DVS dataset is the neuro-
morphic version of the CIFAR-10 dataset. It is composed of
10,000 examples in 10 classes, with 1000 examples in each
class. As the CIFAR10-DVS dataset does not separate data
into training and testing sets, in each class, we choose the
first 9000 samples for training and the rest 1000 samples for
testing, which is similar to [16].

DVS128 Gesture The DVS128 Gesture dataset is
recorded by a DVS128 camera, which contains 11 kinds of
hand gestures from 29 subjects under 3 kinds of illumina-
tion conditions.

5. Preprocessing
Static Datasets. We apply data normalization on all static
datasets to ensure that input images have zero mean and unit
variance. Besides, random horizontal flipping and crop-
ping on MNIST and CIFAR-10 are conducted to avoid over-
fitting. We do not use these augmentations on Fashion-
MNIST as images in this dataset are tidy.
Neuromorphic Datasets. The data in neuromorphic
datasets usually take the form of address event representa-
tion (AER)E(xi, yi, ti, pi) (i = 0, 1, ..., N−1) to represent
the event location in the asynchronous stream, the times-
tamp, and the polarity. As the number of events is large,
e.g. more than one million in CIFAR10-DVS, we split the

events into T slices with nearly the same number of events
in each slice and integrate events to frames. The new repre-
sentation F (j, p, x, y) ( 0 ≤ j ≤ T − 1) is the summation
of event data in the j-th slice:

F (j, p, x, y) =

jr−1∑
i=jl

Ip,x,y(pi, xi, yi), (S1)

where Ip,x,y(pi, xi, yi) is an indicator function and it equals
1 only when (p, x, y) = (pi, xi, yi). jl and jr are the min-
imal and the maximal timestamp indexes in the j-th slice.
jl =

⌊
N
T

⌋
· j, jr =

⌊
N
T

⌋
· (j + 1) if j < T − 1 and N if

j = T − 1. Here b·c is the floor operation. Note that T is
also the number of time-steps in our experiments.

Similar event-to-frame integrating methods for pre-
processing neuromorphic datasets are widely used in both
ANNs [6, 13, 12] and SNNs [16, 17, 1, 19, 6, 7, 10].
T of [16] in Tab. 3 of the main text for N-MNIST and
CIFAR10-DVS are calculated manually according to their
paper. Specifically, they illustrate that the time resolution
is reduced by accumulating the spike train within every 5
ms and the time range (us) of N-MNIST and CIFAR10-
DVS are [290901, 315348] and [1149758, 1459301], re-
spectively.

6. Hyper-Parameters
We use the Adam [8] optimizer with the learning rate

0.001 and the cosine annealing learning rate schedule [11]
with Tschedule = 64. The batch size is set to 16 to re-
duce memory consumption. The drop probability p for
dropout layers is 0.5. The clamp function for PLIF neu-
rons is k(a) = 1

1+e−a and the surrogate gradient function
is σ(x) = 1

π arctan(πx) + 1
2 , thus σ′(x) = 1

1+(πx)2 . We
set Vreset = 0 and Vth = 1 for all neurons. We notice
that some previous works, e.g., [15], [16], fine tuned Vth
for different tasks, which is unnecessary. To be specific, as
Θ(V −Vth) = Θ(Vth( V

Vth
−1)) = Θ( V

Vth
−1) and V is di-

rected influenced by trainable weights, setting Vth = 1 im-
plements an implicit normalization for weights, which can
mitigate the exploding and vanishing gradient problem. As
discovered by Zenke and Vogels [23], ignoring the neuronal
reset when computing gradients by detaching them from the
computational graph can improve performance, we also de-
tach St in the neuronal reset.

7. Accuracy with a Validation Set
The performance comparison in Tab. 2 of the main text

is obtained by training on the training set, testing on the
test set alternately, and recording the maximum test accu-
racy. Both this paper and the state-of-the-art methods use
this way to report performance. However, this kind of accu-
racy is overestimated. Here we also report the accuracy with



Dataset Without Validation 15% Validation

MNIST 99.72% 99.63%
Fashion-MNIST 94.38% 93.85%

CIFAR-10 93.50% 92.58%
N-MNIST 99.61% 99.57%

CIFAR10-DVS 74.80% 69.00%
DVS128 Gesture 97.57% 96.53%

Table S2. Accuracy of the proposed method with/without the vali-
dation set on different datasets.
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Figure S1. The distribution of Wfc

τ
during training the SNN on

CIFAR10-DVS.

validation, which is obtained by splitting the origin training
set into a new training set and validation set, training on the
new training set, testing on the validation set alternately, and
recording the test accuracy on the test set only once with the
model that achieved the maximum validation accuracy. We
utilize 85% samples of each class in the origin training set
as the new training set and set the rest 15% as the valida-
tion set. The accuracy with and without the validation set
of proposed methods is shown at Tab. S2. The experiment
results in Tab. 2 of the main text and Tab. S2 show that the
proposed method outperforms the state-of-the-art accuracy
on nearly all datasets.

8. Distribution of the First Wfc

τ

In Sec. 4.3 of the main text, we find that PLIF neurons af-
ter the first FC layer are learning to become the Non-Leaky-
Integrate-and-Fire neurons as 1

τ → 0 and Wfc

τ converges.
To illustrate the convergence, we show the distribution of
Wfc

τ during training the SNN on CIFAR-10DVS in Fig. S1.
The distribution of Wfc

τ on other datasets converges in the
same way.

Figure S2. Ten samples from the Fashion-MNIST dataset and the
corresponding firing rates F 2

Ts=8 from channel 45,75 and 76 (c =
45, 75, 76) of the first PLIF neurons layer are shown in row 1-4.
Each column represents a sample and corresponding firing rates.

9. Visualization of Spiking Encoder
To evaluate the learnable encoder, we give inputs xt to

the trained network and show the output spikes Snt (c) and
the firing rates F nTs

(c) = 1
Ts

∑Ts−1
t=0 Snt (c) from channel

c in the n-th layer, which is similar to [2]. Although the
output spikes from deeper spiking neurons layers contain
more semantic features, they are harder to read and under-
stand. Thus we only show the spikes from the first spiking
neurons layer, that is, n = 2.

Fig. S2 illustrates 10 input images from static Fashion-
MNIST dataset (row 1) and the firing rates F 2

Ts=8 of three
typical channel (45, 75 and 76) of the first PLIF neurons
layer (row 2, 3 and 4). One can find that the firing rates
from channel 45, 75 and 76 detect upper, left, right edges of
the input images. Fig. S3(a) shows a 2-D grid flatten across
channels from the 3-D tensor S2

t=0(c = 0, 1, ..., 127) when
given an input sample labeled horse, which illustrates the
features extracted by the spiking encoder at t = 0. As the
CIFAR10-DVS dataset is converted from the static CIFAR-
10 dataset, the firing rates accumulated from spikes can
reconstruct the images filtered by the convolutional layer.
Fig. S3(b) illustrates the firing ratesF 2

Ts=19 of all 128 chan-
nels (c = 0, 1, ..., 127), which have clearer texture than bi-
nary output spikes in Fig. S3(a). Fig. S4(a) shows the in-
put xt (row 1) and the corresponding output spikes S2

t of
channel 40 and 103 (row 2 and 3) at t = 0, 1, ..., 19, and
Fig. S4(b) shows the mean input x(Ts) = 1

Ts

∑Ts−1
t=0 xt

(row 1) and the corresponding firing rates F 2
Ts

of channel
40 and 103 (row 2 and 3) at Ts = 0, 1, ..., 19. One can find
that as Ts increases, the texture constructed by firing rates
F 2
Ts

becomes more distinct, which is similar to the use of
the Poisson encoder.

Fig. S5 visualizes three input samples xt and output
spikes S2

t (c = 59) in the DVS128 Gesture dataset. Three
samples labeled random other gestures, right hand clock-
wise, drums at t = 0, 1, ..., 19 from the DVS128 Gesture
dataset are shown in row 1, 3, 5 of Fig. S5. For compar-
ison, the corresponding output spikes from channel 59 of
the PLIF neurons in the first conventional layer are shown



(a) S2
t=0(c = 0, 1, ..., 127) (b) F 2

Ts=19(c = 0, 1, ..., 127)

Figure S3. Given a sample labeled horse from CIFAR10-DVS, (a) shows spikes from all 128 channels of the first spiking neurons layer at
t = 0, and (b) shows firing rates of these neurons at Ts = 19.

(a) xt and S2
t (c = 40, 103) at t = 0, 1, ..., 19 (b) x(Ts) and F 2

Ts
(c = 40, 103) at Ts = 0, 1, ..., 19

Figure S4. Given the sample sample as Fig. S3, the input data and output spikes of channel 40 and 103 at each time-step are showed in (a)
at row 1, 2, 3, respectively. The mean input data and firing rates of channel 40 and 103 at each time-step are showed in (b).

Figure S5. Three samples from the DVS128 Gesture dataset la-
beled random other gestures, right hand clockwise, drums are
shown in row 1, 3, 5. The corresponding output spikes from chan-
nel 59 of the first PLIF neurons layer are shown in row 2, 4, 6.

in rows 2, 4, 6. One crucial difference is that the output al-
most only includes the gesture’s response spikes, indicating
that the spiking neurons implement efficient and accurate
filtering on both spatial-variant and temporal-variant input
data, reserving the gesture but discarding the player.

10. Relations between different Encoders
The Poisson encoder is one of the rate encoding methods

and widely used in SNNs [3, 9, 14, 24, 1, 5] to encode im-
ages into spikes. Given a image pixel p ∈ [0, 1], the encoded
spike St at time-step t is fired with the probability p. Thus,
the expectation of the number of spikes during the whole
time-steps T is EPoisson(ΣT−1t=0 St) = pT . In our poposed
SNNs, the input is directly fed to the network without be-
ing first converted to spikes and the image-spike encoding is
done by the first {Conv2d-Spiking Neurons} module (BN
is omitted), which can be seen as a learnable encoder. Here
we denote this encoder as ENCl. If we set Conv2d non-

learnable with channels = kernel size = 1, the kernel
weight as the constant w > 0, and Spiking Neurons
as Non-Leaky-Integrate-and-Fire neurons with threshold
potential Vth and Vreset = 0, then the expectation of
spikes number of this module is E(ΣT−1t=0 St) = b T

dVth
wp e
c,

where de denotes the ceiling operation. We can find that
E(ΣT−1t=0 St) ≈ EPoisson(ΣT−1t=0 St) when Vth = w = 1,
which indicates that ENCl can approximate the function
of the Possion encoder in rate encoding.

The latency encoder used in [18, 20, 21, 22] is a repre-
sentative temporal encoding method. The latency encoder
encodes the image pixel p into a spike at time-step tp. Thus,
the information of input is encoded in the precise firing time
of the spike. tp is usually inversely proportional to the in-
put intensity p, e.g., tp = b(Tmax − 1)(1 − p)c and Tmax
is the encoding period. We can also find that the first firing
time ofENCl for the given input p is dVth

wp e, which satisfies
that the larger input intensity p causes the faster spike. In
fact, the latency encoder is an extremely simplified learn-
able encoder with directly inputted images. In this paper,
the proposed learnable encoders have learnable weights and
more channels, which is able to encode images into com-
plex spikes pattern with more semantic information, e.g.,
reserving the gesture but discarding the player of samples
from DVS128 Gesture dataset (see Fig. S5).
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