
Supplementary Material: Kernel Methods in Hyperbolic Spaces

Pengfei Fang1,3, Mehrtash Harandi2,3, Lars Petersson3

1The Australian National University, 2Monash University, 3DATA61-CSIRO
Pengfei.Fang@anu.edu.au, mehrtash.harandi@monash.edu, Lars.Petersson@data61.csiro.au

1. Proof of Length Equivalence

Here, we prove the Theorem 1 from § 4 of the main pa-
per. The proof of this theorem follows several steps. We
first formally define the curve length and intrinsic metric.

Definition 1. (Curve Length) The length of a curve γ is
the supremum of L(γ; {ti}ni=0) over all possible partitions
{ti}ni=0, where 0 = t0 < t1 < . . . < tn−1 < tn = 1 and
L(γ; {ti}ni=0) =

∑n
i=1 d(γ(ti−1), γ(ti)).

Definition 2. (Intrinsic Metric) The intrinsic metric δ̂(x, y)
onM is defined as the infimum of the lengths of all paths
from x to y.

Theorem 1. ([4]) If the intrinsic metrics induced by two
metrics d1 and d2 are identical to a scale ζ, then the length
of any given curve is the same under both metrics up to ζ.

Theorem 2. ([4]) if d1(x, y) and d2(x, y) are two metrics
defined on a spaceM such that

lim
d1(x,y)→0

d2(x, y)

d1(x, y)
= 1, (1)

uniformly (with respect to x and y), then the length of any
given curve is the same under both metrics. Consequently,
the intrinsic metrics induced by d1 and d2 are identical.

Therefore, we need to study the the behavior of

lim
dc(zi,zj)→0

λ̃c de(zi, zj)

dc(zi, zj)
, (2)

to prove our theorem. This is also equivalent to study

lim
γ→0

λ̃c de(zi, zj)

dc(zi, zj)
, (3)

where zj = zi ⊕c γ.

Proof. We first prove fD(zi ⊕c γ) = fD(zi) + fD(γ) for

γ → 0.

zi ⊕c γ =
(1 + 2c〈zi, γ〉+ c‖γ‖2)zi + (1− c‖zi‖2)γ

1 + 2c〈zi, γ〉+ c2‖zi‖2‖γ‖2

≈ (1 + 2c〈zi, γ〉)zi + (1− c‖zi‖2)γ

1 + 2c〈zi, γ〉

≈ zi +
1− c‖zi‖2

1 + 2c〈zi, γ〉
γ

= zi + κγ.

(4)

Then the first order approximation of fD(zi + κγ) can
be obtained:

fD(zi + κγ) = tanh−1(
√
c‖zi + κγ‖) zi + κγ√

c‖zi + κγ‖

≈ zi + κγ +
c‖zi + κγ‖2

3
(zi + κγ)

≈ zi + κγ +
c‖zi + κγ‖2

3
zi

+
c‖zi + κγ‖2

3
κγ

≈ zi + κγ +
c‖zi‖2

3
zi

+
2c〈zi, κγ〉

3
zi +

c‖zi + κγ‖2

3
κγ

(5)

The first order approximation of fD(zi) and fD(γ) can
also been obtained:

fD(zi) ≈ zi +
c‖zi‖2

3
zi (6)

and

fD(γ) ≈ γ +
c‖γ‖2

3
γ. (7)

Then we can see:

lim
γ→0

(
fD(zi + κγ)− fD(zi)− fD(γ)

)
= 0. (8)

Since it holds that fD(zi ⊕c γ) = fD(zi) + fD(γ) for
γ → 0, then we have

lim
γ→0

λ̃cde(zi,zj)

dc(zi,zj)
= lim
γ→0

λ̃c‖fD(zi)− fD(zj)‖
2√
c
tanh−1(

√
c‖ − zi ⊕c zj‖)

= lim
γ→0

λ̃c‖fD(zi)− fD(zi ⊕c γ)‖
2√
c
tanh−1

(√
c‖(−zi)⊕c (zi ⊕c γ)‖

)
= lim
γ→0

λ̃c‖fD(zi)− (fD(zi) + fD(γ))‖
2√
c
tanh−1(

√
c‖γ‖)

= lim
γ→0

λ̃c‖fD(γ)‖
2√
c
tanh−1(

√
c‖γ‖)

= lim
γ→0

λ̃c‖tanh−1(
√
c‖γ‖) γ√

c‖γ‖‖
2√
c
tanh−1(

√
c‖γ‖)

= lim
γ→0

λ̃c√
c
tanh−1(

√
c‖γ‖)‖ γ

‖γ‖‖
2√
c
tanh−1(

√
c‖γ‖)

= 1.

(9)

This ends the proof.

2. Understanding of Length Equivalence The-
orem

To better understand the theorem, consider a curve
γ(·) : [0, 1] → Dnc in the Poincaré ball. To measure
the length of this curve, one needs to break it down into
infinitesimal segments, use the geodesic distance between
the end points of each segment and sum up the results.
A partition of the interval [0, 1] is a sequence of points
T = {ti}ni=0, t0 = 0, tn = 1, ti < ti+1. Then
the length of the “inscribed polygon” can be defined as
L(γ; T) =

∑n
i=1 dc(γ(ti−1), γ(ti)) (recall that dc denotes

the geodesic distance). The length of the curve γ is now
simply the supremum of all possible partitions, meaning
L(γ) = supT L(γ; T) which realizes the above statement
w.r.t. to the length of a curve. We recall that an RBF func-
tion with geodesic distance does not realize a pd kernel (see
Theorem 2 in the main paper). As such, to devise pd ker-
nels, we need to embed the Poincaré ball gracefully into
a space where pd kernels can be realized, meaning that
the embedding function should capture properties of the
Poincaré ball one way or another. In our work, we choose
the embedding to be Eq. (5). Now the theorem on the length
of the curves establishes a very strong connection between
the proposed embedding and the geometry of the Poincaré
ball, as the length of the curves is the equivalent under the
geodesic distance dc and de up to a scale of λ̃c. Note that
this theorem does not imply that geodesics are equivalent,
only the curves have the equivalent length.

3. Proof of Negative Definite Kernels
In § 4 of the main paper, Lemma 2 states the squared

norm of the proposed distance (i.e., d2e) is a negative definite
kernel. Here, we give the proof of Lemma 2.

Proof. Suppose
∑m
i=1 ci = 0, then we have:

m∑
i,j=1

cicj‖f(zi)− f(zj)‖2

=

m∑
i,j=1

cicj
{
‖f(zi)‖2 + ‖f(zj)‖2

− 〈f(zi), f(zj)〉 − 〈f(zj), f(zi)〉
}

=

m∑
i=1

ci‖f(zi)‖2
m∑
j=1

cj +

m∑
j=1

cj‖f(zj)‖2
m∑
i=1

ci

− 〈
n∑
i=1

cif(zi),

n∑
j=1

cjf(zj)〉 − 〈
n∑
j=1

cjf(zj),

n∑
i=1

cif(zi)〉

= −2‖
n∑
i=1

cif(zi)‖2 ≤ 0.

(10)

Thus k(zi, zj) = ‖f(zi) − f(zj)‖2 is negative definite.
This ends the proof.

4. Dataset Details
4.1. Few-shot Learning

The miniImageNet is a subset of the ImageNet dataset,
and contains 60,000 images in total. It has 100 classes and
each class has 600 images. We also follow the standard
evaluation protocol, which splits the 100 classes into 64 for
training, 16 for validation and 20 for testing. The CUB
dataset is a fine-grained image recognition dataset and we
also use it to evaluate our few-shot learning algorithms. The
CUB dataset consists of 200 different species of birds and
11,788 images in total. We also follow the standard set-
ting to split the dataset into 100 base classes, 50 validation
classes and 50 test classes. Similar to miniImageNet, tiered-
ImageNet is also a subset of ImageNet with broader classes
(i.e., 608 classes in total). The tiered-ImageNet contains
351 classes for training, 97 classes for validation and 160
classes for testing. FC100, which is based on the CIFAR-
100, is proposed for the FSL task. It also contains three data
splits, i.e. training split, validation split and test split, with
each having 60, 20, 20 classes. The statistics of the dataset
are summarized in Table 1.

4.2. Zero-shot Learning

We evaluate the zero-shot learning on SUN, CUB,
AWA1 and AWA2 datasets. The visual features of

Table 1. Statistics of the datasets for few-shot learning.

Dataset #classes / image #classes / image #classes / image #classes / image
train validation test total

miniImageNet 64 / 38,400 16 / 9,600 20 / 12,000 100 / 60,000
CUB 100 / 5,891 50 / 2,932 50 / 2,965 200 / 11,788

tiered-ImageNet 351 / 448,695 97 / 124,261 160 / 206,209 608 / 779,165
FC100 60 / 36,000 20 / 12,000 20 / 12,000 100 / 60,000

Table 2. Statistics of the datasets for zero-shot learning.

Dataset #images #image #seen #unseen #total
(train + val) (test seen / unseen) classes classes classes

SUN 10,320 2,580 / 1,440 645 72 717
CUB 7,075 1,764 / 2,679 150 50 200

AWA1 19,832 4,958 / 5,685 40 10 50
AWA2 23,527 5,882 / 7,913 40 10 50

Table 3. Statistics of the datasets for person re-identification.

Dataset #IDs / Image #IDs / Image #IDs / Image #IDs / Image Test
train test query test gallery total setting

Market-1501 751 / 12,936 750 / 3,368 751 / 15,913 1,501 / 32,217 single query
DukeMTMC-reID 702 / 16,522 702 / 2,228 1,110 / 17,661 1,404 / 36,411 single query

Table 4. Statistics of the datasets for knowledge distillation.

Dataset #classes / Image #classes / Image Test
train test setting

CIFAR-10 10 / 50,000 10 / 10,000 classification accuracy
CIFAR-100 100 / 50,000 100 / 10,000 classification accuracy

all datasets are extracted from the ImageNet pre-trained
ResNet-101 and the dimension are 2048. The dimensions of
semantic features are 102, 312, 85, and 85 for SUN, CUB,
AWA1 and AWA2, respectively. SUN is a fine-grained
dataset and contains 717 classes with 14,340 images in to-
tal. Those 717 classes are annotated with 102 attributes.
CUB, another fine-grained dataset, contains 11,788 images
of 200 different species of birds, annotated with 312 at-
tributes. The AWA1 is a coarse-grained dataset with ani-
mal images. It has 30,475 images with 50 classes, which
are annotated by 85 attributes. Similar to AWA1, AWA2
consists of 37,322 images with the same animal classes and
attributes as AWA1. The statistics of the dataset are sum-
marized in Table 2.

4.3. Person Re-identification

The Market-1501 dataset consists of 32,668 pedestrian
images, captured by 6 disjoint cameras. The person bound-
ing boxes are detected automatically by DPM [3]. This
dataset is split into 12,936 images of 751 identities for train-
ing and 19,732 of 750 identities for testing. DukeMTMC-
reID is collected by 8 non-overlapped cameras and the per-
son bounding boxes are manually annotated. Following
the standard training protocol, this dataset is divided into
16,522 and 19,889 images for training and testing, respec-

tively. The statistics of the dataset are summarized in Ta-
ble 3.

4.4. Knowledge Distillation

Both CIFAR-10 and CIFAR-100 have 50,000 images
for training and 10,000 images for evaluation. CIFAR-10
contains 10 classes, with each containing 5,000 samples,
while CIFAR-100 contains 100 classes, and each class has
500 samples. The input size of CIFAR-10 and CIFAR-100
are fixed to 32 × 32. The statistics of the dataset are sum-
marized in Table 4.

5. Experimental Details
This section shows the implementation details and loss

functions using our proposed kernels for the applications
presented in the main paper.

5.1. Few-shot Learning

Implementation Details. The network is trained in a meta-
learning manner (see Fig. 1(a)), which is also known as
task-agnostic FSL. In each iteration, we sample an episode
of data to train the network. Specifically, this protocol is
well-known asN -wayK-shot classification. We implement
our methods for few-shot learning (FSL) in the PyTorch ma-
chine learning package [7]. The embedding dimensions

(a) The pipeline of the deep network for few-shot recognition.
XS and XQ denote the input images in the support set and
query set.

(b) The pipeline of the deep network for zero-shot learning. X
and a denotes input images and attribute descriptors.

(c) The pipeline of the deep network for person re-identification.
X denotes the input pedestrian images.

(d) The pipeline of teacher-student network for knowledge dis-
tillation. X denotes the input images.

Figure 1. The pipeline of three applications we consider: (a) few-shot learning, (b) zero-shot learning , (c) person re-identification and (d)
knowledge distillation.

for the Conv-4 and ResNet-18 backbones are 1600 and 512
dimensions. We use the Adam [6] optimizer with default
momentum values (i.e., [β1, β2] = [0.9, 0.999]). Our net-
work is trained for 400 epochs with each epoch sampling
100 episodes. In the miniImageNet dataset, the initial learn-
ing rate is initialized to 5 × 10−3 for Conv-4 and 10−3 for
ResNet-18. At the 80-th epoch, the learning rate is decayed
by 0.5. In the CUB dataset, the initial learning rate is 10−3

for both two backbones. At the 80-th epoch, the learning
rate is decayed by 0.8 for Conv-4 and 0.5 for ResNet-18.
In the testing stage, the accuracy is calculated by the mean
of 10, 000 episodes. In FSL, we set the curvature of the
geometry to 0.01.
Loss Details. In the training phase, each episode is com-
posed of a support set S =

{
({si,1, . . . , si,K}, li) :

i = 1, . . . , N
}

and a query set Q = {(qi, li) : i =
1, . . . , N}. The prototype of each class is computed by
ŝi = 1

K

∑K
j=1 si,j . Then the prototypical network (Pro-

toNet) formulates the loss function as:

LEfsl = − 1

Nq

Nq∑
i=1

log
(exp(−‖qi − ŝ∗‖)∑N

j=1 exp(−‖qi − ŝj‖)
)
, (11)

where qi and ŝ∗ share the same label, and Nq is the number
of query samples in one episode.

Noted that qi, ŝi ∈ Rn for the vanilla ProtoNet, thus the
distance used in Eq. (11) is the L2 distance. Then in the
hyperbolic version (i.e., Hyper ProtoNet), where qi, ŝi ∈
Dnc , the loss is further formulated as:

LHfsl = − 1

Nq

Nq∑
i=1

log
(exp(−dc(qi, ŝ

∗))∑N
j=1 exp(−dc(qi, ŝj))

)
, (12)

where dc is the geodesic distance in the Poincaré ball.
We further plug our kernels in the loss functions, as:

LKfsl = − 1

Nq

Nq∑
i=1

log
(g(k(qi, ŝ

∗))∑N
j=1 g(k(qi, ŝj))

)
, (13)

where k(·, ·) indicates the kernel, and qi, ŝi ∈ Dnc . Here,
g(·) is exp mapping if k(·, ·) is non-exponential type ker-
nels. Otherwise, g(·) is the identity mapping. Table 6
shows the detailed formulations of loss functions with the
proposed kernels.

5.2. Zero-shot Learning

Zero-shot learning (ZSL) aims to identify objects that
are unseen during the training phase. Formally, suppose
we have a seen set Ds and an unseen set Du. Specifi-
cally, the seen set, Ds = {(vsi , lsi ,asi), i = 1, . . . , Ns},

contains the visual feature vi ∈ Rdv , the semantic feature
ai ∈ Rda for the seen class lsi ∈ Ls. Similarly, the unseen
set, Du = {(vui , lui ,aui), i = 1, . . . , Nu}, also contains un-
seen visual feature vui , unseen semantic feature aui with the
unseen class lui ∈ Lu. It is noted that Ls and Lu should be
disjoint, i.e., Ls ∩ Lu = ∅. The pipeline of the network for
ZSL is illustrated in Fig. 1(b).
Implementation Details. We implement our methods for
zero-shot learning (ZSL) in the PyTorch machine learning
package [7]. The visual features are extracted from ResNet-
101, which is pre-trained on ImageNet. The feature dimen-
sion is 2048. Following the standard protocol in ZSL, the
visual features are kept fixed during training. During train-
ing, we sample randomly for a mini-batch. We use a simple
two layers’ MLP (i.e., e(·)) to embed the semantic features.
The MLP receives the semantic features as input and pro-
duces 2048-dimensional embedding features. The dimen-
sion of hidden layer is 1200. We use the Adam [6] opti-
mizer with default momentum values (i.e., [β1, β2] = [0.9,
0.999]). We choose 5 × 10−3 as the initial learning rate.
The network is trained for 100 epochs for SUN and CUB
datasets, and 30 epochs for AWA1 and AWA2 datasets. In
ZSL, we set the curvature of the geometry to 1.
Loss Details. In the training phase, we randomly sample
Nb seen visual features as V = {v1, . . . ,vNb}. All the se-
mantic features are projected to the visual space, denoted by
E = {e(a1), . . . , e(a|Ls|)}, where |Ls| denotes the num-
ber of seen classes in the training set. In our implemen-
tation, the embedding function (i.e., e(·)) is a simple two
layer MLP, with each layer stacking the linear transforma-
tion, ReLU activation and batch normalization. Then the
network is trained by the following cross-entropy type loss:

Lzsl = − 1

Nb

Nb∑
i=1

log
(exp

(
− ‖(e(a∗)− vi‖

)∑|Ls|
j=1 exp

(
− ‖e(aj)− vi‖

)),
(14)

where a∗ shares the same label with vi. Note that the
baseline network is conducted on Euclidean spaces (i.e.,
e(a),v ∈ Rn).

Then in our work, the kernelized loss function for the
hyperbolic representations (i.e., e(a),v ∈ Dnc) can be mod-
ified as:

LKzsl = − 1

Nb

Nb∑
i=1

log
(g

(
k((e(a∗),vi)

)∑|Ls|
j=1 g

(
k(e(aj),vi)

)), (15)

where k(·, ·) indicates the kernel. Here, g(·) is exp mapping
if k(·, ·) is non-exponential type kernels. Otherwise, g(·) is
the identity mapping. Table 6 shows the detailed formula-
tions of loss functions with the proposed kernels.

5.3. Person Re-identification

Person re-identification (re-ID) aims to retrieve correct
person images from a gallery dataset for the query person
of interest. The goal of training a re-ID machine is to learn
an embedding space, where the intra- (or inter-) person vari-
ance is minimized (or maximized). The feature extractor is
trained by a classification task. In the inference phase, the
penultimate layer of the network is used as a feature repre-
sentation for the unseen person. The pipeline of the deep
network for person re-ID is shown in Fig. 1(c).
Implementation Details. We implement our methods on
person re-ID in the PyTorch machine learning package [7].
The size of the input image is cropped to 256 × 128. Each
mini-batch is sampled randomly with the size of 64. The
ResNet-50 first generates 2048-dimensional features and a
following fully-connected (FC) layer embeds the feature to
a final representation (i.e., f). An additional FC layer is
further used to predict the person’s identity. We use the
Adam [6] optimizer with default momentum values (i.e.,
[β1, β2] = [0.9, 0.999]). The network is trained for 300
epochs. The initial learning rate is 5 × 10−4. In the 50-
th, 100-th and 150-th epoch, the learning rate is decayed
by 0.1. We report the performance of the trained network
at the 300-th epoch. We do not apply extra data augmen-
tation techniques and re-ranking to boost the result in the
testing stage. It is also worth noting that we apply the iden-
tical training strategy and hyper-parameter for Market-1501
and DukeMTMC-reID datasets. In person re-ID, we set the
curvature of the geometry to 0.01.
Loss Details. Given a person image with associated identity
(i.e., y), the network first extracts its appearance represen-
tation (i.e., f ∈ Rn). The a fully connected layer (i.e., W)
is applied to predict the identity of person and a softmax
function is used to normalize the output (i.e., p = W>f).
The probability of the person f w.r.t. its label y is denoted
by p(y|f) = exp(〈w∗,f〉)∑N

j exp(〈wj ,f〉)
. The training will minimize

the negative log-probability, as

Lreid = − log
(
p(y|f)

)
= − log

(exp(〈w∗,f〉)∑N
j exp(〈wj ,f〉)

)
.

(16)

The kernelized loss function can further be obtained:

LKreid = − log
(g(k(w∗,f))∑N

j g(k(wj ,f))

)
, (17)

where k(·, ·) indicates the kernel and w∗,f ∈ Dnc . Here,
g(·) is exp mapping if k(·, ·) is non-exponential type ker-
nels. Otherwise, g(·) is the identity mapping. Table 6
shows the detailed formulations of loss functions with the
proposed kernels.

5.4. Knowledge Distillation

Implementation Details. We implement our methods on
knowledge distillation (see Fig. 1(d)) in the PyTorch ma-
chine learning package [7]. Table 5 illustrates the CNN
architectures for teacher and student networks. The size of
the input image is fixed to 32 × 32. We randomly sam-
ple 128 images for each mini-batch. The ResNet-20 is first
trained as a teacher network. Then the output of ResNet-20
is used as ground truth to train the student network. We use
the SGD optimizer with 0.9 momentum value. The network
is trained for 200 epochs. The learning rate is initialized to
0.1 and decayed at the 100-th, 150-th epochs by a factor of
0.1. We report the result at the 200-th epoch. In KD, the
curvature of hyperbolic geometry is set to 0.001 for all ex-
periments. Also, we stay consistent with the popular choice
for the temperature: T = 4 across all experiments [2, 8]

Table 5. Network architecture for knowledge distillation on
CIFAR-10 and CIFAR-100 datasets. PNs indicates the parameter
numbers.

Conv layer Teacher Student
ResNet-20 4-layer CNN

Conv1 conv, 3× 3, 16 conv, 3× 3, 16

Conv2

[
conv, 1× 1, 16
conv, 3× 3, 16

]
×3 conv, 3× 3, 16

Conv3

[
conv, 1× 1, 32
conv, 3× 3, 32

]
×3 conv, 3× 3, 32

Conv4

[
conv, 1× 1, 64
conv, 3× 3, 64

]
×3 conv, 3× 3, 64

CIFAR-10 / 100 global average pooling, 10 / 100-classes, softmax
PNs (×10−6) 0.272 / 0.278 0.027 / 0.032

Loss Details. In the knowledge distillation task, the
teacher network generates the prediction scores g =
[g1, g2, . . . , gN]> for a input image (e.g., X). Then the
student network first extract the feature vector of input
image as f ∈ Rn, and a fully connected layer W =
[w1,w2, . . . ,wN] is used to produce the predication, i.e.
p = softmax(W>f) and each pi is given by:

pi =
exp(〈wi,f〉/T)∑N
j=1 exp(〈wj ,f〉/T)

, (18)

where T is the temperature. Then the KD loss is:

Lkd = −
N∑
i=1

gilog(pi)

= −
N∑
i=1

gi log
(exp(〈wi,f〉/T)∑N

j=1 exp(〈wj ,f〉/T)

)
.

(19)

The kernelized KD loss for the hyperbolic representation
f ∈ Dnc can be obtained as:

LKkd = −
N∑
i=1

gi log
(g(k(wi,f)/T)∑N

j=1 g(k(wj ,f)/T)

)
, (20)

where k(·, ·) indicates the kernel and wi,f ∈ Dnc . Here,
g(·) is exp mapping if k(·, ·) is non-exponential type ker-
nels. Otherwise, g(·) is the identity mapping. Table 6
shows the detailed formulations of loss functions with the
proposed kernels.

6. Details for the Indefinite Kernel
Here, we give the detail formulation of the indefinite ker-

nel used in the main paper. Let kE(·, ·) be a Euclidean inner
product kernel, satisfying KE(x,x) < 1 for all ‖x‖ ≤ 1.
Given two points in the Minkowski spaces, also known as
hyperboloid model, (i.e., ri, rj ∈ Mn), then the kernel is
defined as:

kM (ri, rj) =
kE
(
g(ri), g(rj)

)
− 1√(

1− kE(g(ri), g(ri))
)(
1− kE(g(rj), g(rj))

) ,
(21)

where g(·) maps the point in the hyperboloid model to the
Klein ball model.

Then we are going to explain the details to implement
the indefinite kernel. In our implementation, the network
first generates features in the poincaré ball, i.e., z ∈ Dnc .
Then we can further project the point to Klein mode, as:

Dnc → Knc : h(z) =
2z

1 + c‖z‖2
. (22)

Since the Hyperboloid model and poincaré ball are iso-
metric, we can obtain the indefinite kernel as:

kin(zi,zj) =
KE(h(zi), h(zj)− 1)√(

1− kE(h(zi), h(zi))
)(
1− kE(h(zj), h(zj))

) .
(23)

In this study, we also conduct experiments to choose a
proper curvature (i.e., c) for the indefinite kernel on the few-
shot learning task. Here, we use the setting of 5-way 1-
shot and 5-way 5-shot on the FC100 dataset across various
curvature values. Fig. 2 shows that the performance of the
indefinite kernel reaches the peak. Hence, the curvature is
set to 1 for the indefinite kernel in the main paper.

7. Robustness of kernel machines
We evaluate the robustness of the proposed kernel ma-

chines. We compare our methods against the original hy-
perbolic embeddings with various curvature of hyperbolic
geometry (i.e., 10−5, 10−4, 10−3, 10−2, 10−1 and 1). This
study is conducted on miniImageNet for a 5-way 5-shot set-
ting under Conv-4 backbone. Fig. 3 indicates that: (1) the
discrimination of embedding in hyperbolic space is sensi-
tive to the curvature of geometry. Increasing the curvature
will degrade the network performance. (2) The hyperbolic
tangent kernel, hyperbolic RBF kernel and hyperbolic bino-
mial kernel are robust against the curvature of geometry. (3)
The hyperbolic Laplace kernel is also sensitive to the cur-
vature. However, it degrades gracefully. For example, the

1e-05 0.0001 0.001 0.01 0.1 1.0 10.0
Curvature

30

32

34

36

38

40

42

44

46

48

Ac
cu

ra
cy

 (%
)

5-way 1-shot
5-way 5-shot

(a) In this plot, we set the curvature values to 10−5, 10−4, 10−3, 10−2,
10−1 and 1.

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Curvature

30

32

34

36

38

40

42

44

46

48

Ac
cu

ra
cy

 (%
)

5-way 1-shot
5-way 5-shot

(b) In this plot, the curvature varies from 0.5 to 1.5.

Figure 2. The performance comparison for the indefinite kernel on the few-shot learning task. We evaluate the indefinite kernel on both
5-way 1-shot and 5-way 5-shot settings and use Conv-4 as the backbone network.

1e-05 0.0001 0.001 0.01 0.1 1.0
Curvature

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

Hyperbolic embedding
Hyperbolic tangent kernel
Hyperbolic RBF kernel
Hyperbolic Laplace kernel
Hyperbolic binomial kernel

Figure 3. The performance comparison on miniImageNet with var-
ious curvature of the hyperbolic geometry. The experiment is con-
ducted on a few-shot learning task under the 5-way 5-shot setting
and we use Conv-4 as the backbone network.

hyperbolic Laplace kernel decreases 10% accuracy, while
the embedding in hyperbolic space losses more than 20%
accuracy.

8. Good Practice of Employing Hyperbolic Ge-
ometry

In the main paper, we explained our work generates the
hyperbolic representations in the Poincaré ball. In this sup-
plementary material, we show the schematic comparison
between existing works [1, 5] and our work in employ-
ing the geometry constraint in deep networks in Fig. 4. In

Fig. 4(a), the mapping Γ0(·) projects the point x in the Eu-
clidean spaces Rn to the hyperbolic spaces Hn is given by:

Γ0(x) = tanh(
√
c‖x‖) x√

c‖x‖
. (24)

In Fig. 4(b), we generate the feature vector in the hyper-
bolic space and map the vector to the reproducing Kernel
Hilbert spaceH by the proposed kernels.

We also visualize the features learned from the pipeline
in Fig. 4(a) and Fig. 4(b), respectively. Both 2-D em-
beddings are trained by a small CNN for MNIST dataset.
Fig. 5(a) and Fig. 5(b) visualize the features trained by the
network under the constraint in Fig. 4(a), and in Fig. 4(b),
respectively. From Fig. 5, we can find in both pipelines,
most of the samples are distributed near the boundary, sim-
ilar observation can be found in [5]. In addition, as com-
pared to the embeddings learned from existing geometry
constraint (see Fig. 5(a)), the feature embeddings from our
practice (see Fig. 5(b)) is clustered evenly near the bound-
ary of the Poincaré ball, showing the good practice of using
the hyperbolic geometry in our work. In Fig. 6, we further
visualization the feature embeddings for each class, which
also verifies our observations. For example, in the blue,
green and fuchsia classes (Fig. 6(e) vs. Fig. 6(f), Fig. 6(g)
vs. Fig. 6(h) and Fig. 6(o) vs. Fig. 6(p)), the embeddings
from our practice are more compact then those from exist-
ing works.

References
[1] Jiaxin Chen, Jie Qin, Yuming Shen, Li Liu, Fan Zhu, and Ling

Shao. Learning attentive and hierarchical representations for
3d shape recognition. In ECCV, 2020. 7, 9

Table 6. Summary of the loss functions using the proposed positive definite kernels in hyperbolic spaces. g-Hyperbolic Laplace kernel
indicates the generalized hyperbolic Laplace kernel.

Kernel Kernelized Loss Functions

Few-shot Learning

fD(z) = tanh−1(
√
c‖z‖) z√

c‖z‖ , c > 0 and q, ŝ ∈ Dnc

Hyperbolic tangent kernel Ltan
fsl = − 1

Nq

∑Nq
i=1 log

(exp(〈fD(qi),fD(ŝ
∗)〉)∑N

j=1 exp(〈fD(qi),fD(ŝj)〉)

)
Hyperbolic RBF kernel Lrbf

fsl = − 1
Nq

∑Nq
i=1 log

(exp(−ξ‖fD(qi)−fD(ŝ
∗)‖2)∑N

j=1 exp(−ξ‖fD(qi)−fD(ŝj)‖2)

)
Hyperbolic Laplace kernel Llap

fsl = − 1
Nq

∑Nq
i=1 log

(exp(−ξ‖fD(qi)−fD(ŝ
∗)‖)∑N

j=1 exp(−ξ‖fD(qi)−fD(ŝj)‖)

)
Hyperbolic binomial kernel Lbin

fsl = − 1
Nq

∑Nq
i=1 log

(exp
(
1−(〈fD(qi),fD(ŝ

∗)〉)−α
)

∑N
j=1 exp

(
(1−〈fD(qi),fD(ŝj)〉)−α

))
Zero-shot Learning

fD(z) = tanh−1(
√
c‖z‖) z√

c‖z‖ , c > 0 and e(a),v ∈ Dnc

Hyperbolic tangent kernel Ltan
zsl = − 1

Nb

∑Nb
i=1 log

(exp
(
〈fD(e(a∗)),fD(vi)〉

)
∑|Ls|
j=1 exp

(
〈fD(e(aj)),fD(vi)〉

))
Hyperbolic RBF kernel Lrbf

zsl = − 1
Nb

∑Nb
i=1 log

(exp
(
−ξ‖fD(e(a∗))−fD(vi)‖2

)
∑|Ls|
j=1 exp

(
−ξ‖fD(e(aj))−fD(vi)‖2

))
Hyperbolic Laplace kernel Llap

zsl = − 1
Nb

∑Nb
i=1 log

(exp
(
−ξ‖fD(e(a∗))−fD(vi)‖

)
∑|Ls|
j=1 exp

(
−ξ‖fD(e(aj))−fD(vi)‖

))
Hyperbolic binomial kernel Lbin

zsl = − 1
Nb

∑Nb
i=1 log

(exp
((

1−〈fD(e(a∗))−fD(vi)〉
)−α)

∑|Ls|
j=1 exp

((
1−〈fD(e(aj))−fD(vi)〉

)−α))
Person Re-identification

fD(z) = tanh−1(
√
c‖z‖) z√

c‖z‖ , c > 0 and f ∈ Dnc , w ∈ Rn

Hyperbolic tangent kernel Ltan
reid = − log

(exp(〈w∗,fD(f)〉)∑N
j=1 exp(〈wj ,fD(f)〉)

)
Hyperbolic RBF kernel Lrbf

reid = − log
(exp(−ξ‖w∗−fD(f)‖2)∑N

j=1 exp(−ξ‖wj−fD(f)‖2)

)
g-Hyperbolic Laplace kernel Lglap

reid = − log
(exp(−ξ‖w∗−fD(f)‖2α)∑N

j=1 exp(−ξ‖wj−fD(f)‖2α)

)
Hyperbolic binomial kernel Lbin

reid = − log
(exp

(
(1−〈w∗,fD(f)〉)−α

)
∑N
j=1 exp

(
(1−〈wj ,fD(f)〉)−α

))
Knowledge Distillation

fD(z) = tanh−1(
√
c‖z‖) z√

c‖z‖ , c > 0 and f ∈ Dnc , w ∈ Rn

Hyperbolic tangent kernel Ltan
kd = −

∑N
i=1 gi log

(exp(〈wi,fD(f)〉/T)∑N
j=1 exp(〈wj ,fD(f)〉/T)

)
Hyperbolic RBF kernel Lrbf

kd = −
∑N
i=1 gi log

(exp(−ξ‖wi−fD(f)‖2/T)∑N
j=1 exp(−ξ‖wj−fD(f)‖2/T)

)
g-Hyperbolic Laplace kernel Llap

kd = −
∑N
i=1 gi log

(exp(−ξ‖wi−fD(f)‖2α/T)∑N
j=1 exp(−ξ‖wj−fD(f)‖2α/T)

)
Hyperbolic binomial kernel Lbin

kd = −
∑N
i=1 gi log

(exp
(
(1−〈wi,fD(f)〉)−α/T

)
∑N
j=1 exp

(
(1−〈wj ,fD(f)〉)−α/T

))

[2] Jang Hyun Cho and Bharath Hariharan. On the efficacy of
knowledge distillation. In ICCV, October 2019. 6

[3] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester,
and Deva Ramanan. Object Detection with Discriminatively

Trained Part-Based Models. PAMI, 2010. 3
[4] Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong

Li. Rotation average. IJCV, 2012. 1
[5] Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova,

(a) Geometry constraints in existing works [1, 5].

(b) Geometry constraints in our work.

Figure 4. Schematic comparison between existing works and our
work in employing constraints from the hyperbolic geometry.

Ivan Oseledets, and Victor Lempitsky. Hyperbolic image em-
beddings. In CVPR, 2020. 7, 9

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 4, 5

[7] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in pytorch. In NeurIPS, 2017. 3, 5, 6

[8] Sergey Zagoruyko and Nikos Komodakis. Paying more atten-
tion to attention: Improving the performance of convolutional
neural networks via attention transfer. In ICLR, 2017. 6

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Ours
Figure 5. Visualization of the features in hyperbolic spaces learned for MNIST. (a): Hyperbolic embeddings trained by the pipeline in
Fig. 4(a). (b):Hyperbolic embeddings trained by the pipeline in Fig. 4(b). Here, we use the hyperbolic tangent kernel. In both cases, most
of embeddings are distributed near the boundary of the Poincaré ball. Also, in our practice (see (b)), the features from the same class are
clustered evenly and compactly. Best viewed in color.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Ours

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(d) Ours

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(e)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(f) Ours

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(g)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(h) Ours

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(i)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(j) Ours

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(k)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(l) Ours

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(m)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(n) Ours

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(o)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(p) Ours

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(q)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(r) Ours

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(s)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(t) Ours

Figure 6. Visualization of the feature embeddings for each class on MNIST dataset. In each pair, the left one is the visualization for the
pipeline in Fig. 4(a) and the right one is the visualization for the pipeline in Fig. 4(b). Best viewed in color.

