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1 Derivation

1.1 Linear Constraint on W

In this section, we derive the linear scale-invariant constraint on W in Eq (3) of the main paper.
We repeat the projection equation of the ankle center point of person i and j here for completeness:

λB,ix̄B,i = KXB,i

λB,jx̄B,j = KXB,j .
(1)

∗Work was done when Xiangyu was at Amazon.
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Take the difference of the two equations above, and multiply both sides by N>K−1, we have

N>K−1(λB,ix̄B,i − λB,jx̄B,j) = N>(XB,i −XB,j).

Use the ground plane equation N>XB,i + ρ = 0, and then the right-hand side of the equation above
is 0. Also recall that we have defined v , KN in the main paper, substitute N = K−1v into the
equation above, we have the following constraint

v>K−>K−1(λB,ix̄B,i − λB,jx̄B,j) = 0 (2)

which is scale-invariant to λB,i, λB,j and v. As such, it is safe to substitute λB,i, λB,j and v with
their scaled version, i.e., λ̃B,i, λ̃B,j and ṽ obtained in Section 3.2 of the main paper, leading to a
scale-invariant linear constraint on W , K−>K−1 ∈ R3×3:

ṽ>W(λ̃B,ix̄B,i − λ̃B,jx̄B,j) = 0. (3)

A similar constraint can be derived for the shoulder center point of person i and j:

ṽ>W(λ̃T,ix̄T,i − λ̃T,jx̄T,j) = 0. (4)

which is essentially the same as Eq. (3) because

λ̃T,ix̄T,i − λ̃T,jx̄T,j
=KXT,i −KXT,j

=K(XB,i + h ·N)−K(XB,j + h ·N)
=KXB,i −KXB,j

=λ̃B,ix̄B,i − λ̃B,jx̄B,j .

Therefore, we construct the linear system B[1/f2
x , 1/f2

y ]> = y only using the ankle center points.

1.2 Linear System B[1/f 2
x , 1/f 2

y ]> = y

The exact form of the second linear system B[1/f2
x , 1/f2

y ] = y is the following:

B =



ṽ>[1 : 2]�∆>B,1,2[1 : 2]
...

ṽ>[1 : 2]�∆>B,i,j [1 : 2]
...

ṽ>[1 : 2]�∆>B,N−1,N [1 : 2]


∈ R

N(N−1)
2 ×2, y =



ṽ[3]∆B,1,2[3]
...

ṽ[3]∆B,i,j [3]
...

ṽ[3]∆B,N−1,N [3]


∈ R

N(N−1)
2 ×1 (5)

where � is component-wise product, we use [a : b] to indicate the index range from a to b –
both inclusive, and [a] to indicate the a-th component of a vector. We also define ∆B,i,j ,
λ̃B,ix̄B,i − λ̃B,jx̄B,j .

We discuss the existence of solutions for both the isotropic and anisotropic focal length models.
Note, in both cases, due to measurement noise, the solution of the least-square problem may not be
positive – a requirement imposed by f2

x and f2
y , and as such, the focal length may not be estimated

given noisy measurements.
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1.2.1 Anisotropic Focal Length fx 6= fy

By definition, at least one pair of people has to be observed to constrain W, so N >= 2. When
N = 2, B is of dimension 1× 2 leading to an under-determined linear system which has infinitely
many solutions. When N >= 3, B has more rows (N(N−1)

2 ≥ 3) than columns (2), and as such the
linear system is over-determined – a solution exists in least-square sense. Therefore, we require at
least three people visible to estimate fx and fy that are different.

1.2.2 Isotropic Focal Length fx = fy

We can simplify the intrinsics model even further by assuming isotropic focal length along x and y
axes, i.e., fx = fy = f , leading to the following least square estimate of f :

f2 = −
∑
i 6=j ṽ[1 : 2]>∆B,i,j [1 : 2]∑

i 6=j ṽ[3]∆B,i,j [3] (6)

As shown in the equation above, we need at least one pair of people (i 6= j)to solve f2.
Results of noise-free simulation for both isotropic and anisotropic cases are reported in Table 1.

1.3 Reconstruction

In this Section, we derive the equations present in Sect. 3.3 Reconstruction of the main paper.
Ankle and shoulder center points in 3-D To reconstruct the ankle center points in 3-D, first
recall the projection equation for the i-th ankle center point

λB,ix̄B,i = KXB,i.

It’s trivial to compute XB,i once the depth λB,i and projection matrix K have been estimated –
simply multiple both sides by K−1:

XB,i = λB,iK−1x̄B,i.

The reconstruction equation for shoulder center points can be derived in the same way:

XT,i = λT,iK−1x̄T,i.

Ground plane offset The ground plane equation for each ankle center point constrains the ground
plane offset ρ:

N>XB,i + ρ = 0.

Recall the ankle-shoulder relation XT,i = XB,i + h ·N, and substitute XB,i in the equation above
with XT,i, we have another constraint for ρ:

N>(XT,i − h ·N) + ρ = 0.

As ρ is a scalar, the least-square estimate of ρ given all the constraints above is the average of the
estimates from each individual constraint:

ρ = 1
2N

( N∑
i=1
−N>XB,i +

N∑
i=1

h−N>XT,i

)
= 1

2h−N> 1
2(X̄B + X̄T )

(7)
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where X̄B = 1
N

∑N
i=1 XB,i and X̄T = 1

N

∑N
i=1 XT,i.

Decoupled formulation Unlike the joint formulation where the depth λB,i, λT,i and the calibration
parameters K,N, ρ are estimated simultaneously, in the decouple formulation, we reconstruct the
3-D points after estimating the calibration parameters. To reconstruct a 3-D point is to estimate its
depth and back-project its 2-D observation to 3-D. To achieve this, recall the projection equation
λB,ix̄B,i = KXB,i and the ground plane equation N>XB,i + ρ = 0, together we have a constraint
on the unknown depth λB,i and solve it as:

λB,i = − ρ

N>K−1x̄B,i
. (8)

We then back-project the ankle center point from 2-D to 3-D:

XB,i = λB,iK−1x̄B,i

= −ρ
N>K−1x̄B,i

K−1x̄B,i.
(9)

The corresponding shoulder center point can be computed as XT,i = XB,i + h ·N.

1.4 Ground Plane Estimation Given Projection Matrix

In some use cases, the projection matrix K is given by a dedicated calibration procedure with a
calibration pattern. In such cases, we only need to estimate the ground plane parameters N and
ρ to reconstruct the 3-D points using the decoupled formulation. The physical distances are then
measured within the 3-D reconstruction.

Let’s start with the two projection equations for the i-th person:

λT,ix̄T,i = KXT,i

λB,ix̄B,i = KXB,i

as the projection matrix K is known, we move it the left-hand side, and substitute XT,i = XB,i+h·N
leading to

λT,iK−1x̄T,i − λB,iK−1x̄B,i = h ·N (10)

which is linear in λT,i, λB,i and N. Collect and stack the constraints for all the people visible in the
image, we have the following linear system to solve:

K−1x̄T,1 −K−1x̄B,1 · · · 0 0 −h · I3
...

... . . . ...
...

...
0 0 · · · K−1x̄T,N −K−1x̄B,N h · I3




λH,1
λF,1
...

λH,N
λF,N

N


= 0. (11)

By solving this, we obtain λ̃H , λ̃F and Ñ up to scale. The proper scaling factor can be recovered by
using the unitary constraint on the ground plane normal N as shown in the main paper. Estimation
of the ground plane offset ρ as well as the 3-D points X is the same as discussed in Sect. 3.3 of the
main paper.
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1.5 Modeling Radial Distortion

The calibration algorithm described in the main paper assumes perfect perspective projection without
considering lens distortion. Although in real-world experiments on MEVA, we have shown that our
method is relatively robust to lens distortion, in this section, we extend our calibration algorithm
by explicitly modeling lens distortion using the 1-parameter division model of Fitzgibbon [1].

Let the measured keypoints on the image be x′ ∈ Ω ⊂ R2 which are distorted, and let
their undistorted counterparts be x ∈ Ω, the 1-parameter division model relates the two via
x = x′/(1 + k · r2) where r = ‖x′‖ =

√
x′2 + y′2, and k ∈ R is the unknown distortion parameter.

Express the equality in homogeneous coordinates, we have

x̄ =

xy
1

 = 1
1 + k · r2

 x′

y′

1 + kr2

 = 1
1 + k · r2

(x′y′
1

+ k

 0
0
r2

) = 1
1 + k · r2 (x̄′ + k · z) (12)

where we have defined z , [0, 0, r2]>.
Now if we substitute x̄ into the linear constraint Eq (1)

λT,ix̄T,i − λB,ix̄B,i = h · v

of the main paper, we have

λ′T,i(x̄′T,i + kzT,i)− λ′B,i(x̄′B,i + kzB,i) = hv (13)

where λ′ , λ/(1 + k · r2), and λ is the depth of the point. We construct X̄′ and A′ by collecting
and stacking all the constraints and unknowns. Along with an additional term C ∈ R3N×(2N+3), we
have a new system to solve

(A′ + k ·C)X̄′ = 0. (14)

Specifically, we have
X̄′ = [λ′T,1, λ′B,1 · · ·λ′T,N , λ′B,N ,v>]> ∈ R2N+3

A′ ,


x̄′T,1 −x̄′B,1 · · · 0 0 −h · I3
...

... . . . ...
...

...
0 0 · · · x̄′T,N x̄′B,N −h · I3

 ∈ R3N×(2N+3). (15)

and

C =

zT,1 −zB,1 · · · 03×1 03×1 03×3
...

... . . . ...
...

...
03×1 03×1 · · · zT,N −zB,N 03×3

 ∈ R3N×(2N+3). (16)

Pre-multiply both sides of (A′+k ·C)X̄′ = 0 by A′>, we obtain a generalized eigenvalue problem
(A′>A′)X̄′ = k · (−A′>C)X̄′, which can be solved by QZ decomposition [4].

The standard form of a generalized eigenvalue problem is Au = λBu, where both A and B are
square matrices. In our case, A := A′>A′, B := −A′>C, u := X̄′, and k := λ.

We show simulation results of distortion modeling in Sect. 2.2 and compare it against the vanilla
version of our estimator that does not model lens distortion.
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2 More Simulation Results

2.1 Noise-Free

We report detailed experiment results of the noise-free simulation for both the isotropic (fx = fy)
and anisotropic (fx 6= fy) focal length model in Table 1. The experiment setup and the evaluation
metrics are described in the main paper. We found that all the error terms are close to 0 (to machine
precision) confirming the validity of the proposed algorithm.

Error (unit) FOV \res. 640× 480 1280× 720 1920× 1080
isotropic focal length fx = fy

f(%)

45◦ 1.89e-11 1.43e-11 8.02e-11
60◦ 1.38e-11 5.66e-11 2.87e-11
90◦ 4.19e-11 1.18e-10 7.33e-11
120◦ 2.58e-11 7.36e-11 4.15e-10

N(◦)

45◦ 9.04e-8 9.41e-8 1.03e-7
60◦ 9.45e-8 9.48e-8 9.99e-8
90◦ 1.01e-7 8.90e-8 9.73e-8
120◦ 8.94e-8 9.91e-8 9.38e-8

ρ(%)

45◦ 7.96e-12 6.85e-12 2.18e-11
60◦ 7.82e-12 2.60e-11 1.27e-11
90◦ 1.80e-11 1.62e-11 2.56e-11
120◦ 9.33e-12 2.03e-11 2.98e-11

X(%)

45◦ 1.11e-11 9.65e-12 4.41e-11
60◦ 9.42e-12 3.47e-11 1.70e-11
90◦ 2.94e-11 6.05e-11 3.92e-11
120◦ 1.46e-11 3.75e-11 2.14e-10
anisotropic focal length fx 6= fy

fx(%)

45◦ 2.34e-11 5.85e-11 4.68e-11
60◦ 1.31e-11 4.23e-11 1.76e-11
90◦ 1.69e-11 1.76e-11 4.27e-11
120◦ 6.59e-11 4.51e-11 4.11e-11

fy(%)

45◦ 1.36e-11 3.98e-11 2.68e-11
60◦ 1.19e-11 1.58e-11 2.63e-11
90◦ 1.82e-11 2.31e-11 1.91e-11
120◦ 4.45e-11 4.01e-11 2.97e-11

N(◦)

45◦ 9.68e-8 9.31e-8 1.02e-7
60◦ 8.99e-8 8.75e-8 8.97e-8
90◦ 8.99e-8 9.95e-8 9.97e-8
120◦ 1.01e-7 9.19e-8 9.06e-8

ρ(%)

45◦ 2.97e-12 2.76e-12 4.08e-12
60◦ 2.69e-12 4.36e-12 5.09e-12
90◦ 3.38e-12 4.27e-12 3.90e-12
120◦ 3.55e-12 8.34e-12 4.88e-12

X(%)

45◦ 7.47e-12 2.33e-11 2.22e-11
60◦ 6.24e-12 1.78e-11 1.55e-11
90◦ 1.08e-11 1.36e-11 2.69e-11
120◦ 3.90e-11 2.79e-11 3.20e-11

Table 1: Estimation error in noise-free simulation. We conduct Monte Carlo experiments of 5,000
trials for each resolution-FOV pair, and show the average of focal length estimation error (f in
isotropic case and fx, fy in anisotropic case), ground plane estimation error (N, ρ), and reconstruction
error (X) as described in Sect. 4 Simulation of the main paper.

2.2 Lens Distortion

In this section, we demonstrate the proposed calibration method with distortion modeling in
simulation.

The simulation has a similar setup as in the main paper where we first randomly generate ankle
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and shoulder center points XB,i,XT,i ∈ R3 in 3-D satisfying the three model assumptions, and then
project the 3-D points to the image plane to produce 2-D measurements xB,i,xT,i ∈ Ω.

Unlike the perfect perspective projection model in the main paper where no lens distortion is
applied, in this experiment, we adopt a polynomial model 1 to synthesize the distorted measurements:
xd = c + (1 + k1 · r2 + k2 · r4) · (x − c) ∈ R2, where x is the undistorted measurement, c is the
principal point, r = ‖x− c‖ is the distance of the undistorted projection to the principal point, and
k1, k2 are the distortion parameters. Note, the polynomial model used in synthesizing the simulation
data is different from the 1-parameter division model used in the solver. Though the polynomial
model can also be used in modeling, we found the 1-parameter division model results in a simpler
implementation where no iterative optimization is needed.

We fix the resolution to 1920 × 1080, FOV to 90◦, number of people visible in the image to
20, and test different distortion configurations. For each configuration, we conduct Monte Carlo
experiments of 5,000 trials. Table 2 shows a comparison of our estimator with and without modeling
lens distortion on the noise-free but distorted measurements under different distortion configurations
(k1, k2). It’s not hard to see that in all the test cases, the estimator that models lens distortion has
less estimation error compared to the one that does not model lens distortion. However, we also
found that the former is more sensitive to measurement noise than the latter, and fails more often
in noisy settings. We leave the seek of different distortion models and more stable numeric schemes
as future work.

1https://docs.opencv.org/3.4/d4/d94/tutorial_camera_calibration.html
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Error (unit) with distortion modeling without distortion modeling
k1 = 10−3, k2 = 0

fx(%) 1.077e− 5± 7.81e− 6 0.16± 0.32
fy(%) 1.077e− 5± 7.81e− 6 0.16± 0.32
N(◦) 8.99e− 7± 7.47e− 7 0.053± 0.045
ρ(%) 3.55e− 6± 5.29e− 6 0.12± 0.12
X(%) 6.06e− 6± 3.46e− 6 0.23± 0.23

k1 = −10−3, k2 = 0
fx(%) 1.076e− 5± 7.78e− 6 0.17± 0.34
fy(%) 1.076e− 5± 7.78e− 6 0.17± 0.34
N(◦) 1.049e− 6± 2.90e− 7 0.054± 0.046
ρ(%) 3.68e− 6± 5.25e− 6 0.13± 0.21
X(%) 6.09e− 6± 3.39e− 6 0.24± 0.33

k1 = 10−4, k2 = 0
fx(%) 3.82e− 6± 8.64e− 6 0.017± 0.055
fy(%) 3.82e− 6± 8.64e− 6 0.017± 0.055
N(◦) 1.44e− 6± 3.80e− 6 0.0055± 0.013
ρ(%) 2.71e− 6± 8.52e− 6 0.013± 0.043
X(%) 3.86e− 6± 6.82e− 6 0.023± 0.045

k1 = −10−4, k2 = 0
fx(%) 3.72e− 6± 8.24e− 6 0.017± 0.035
fy(%) 3.72e− 6± 8.24e− 6 0.017± 0.035
N(◦) 1.41e− 6± 3.56e− 6 0.0053± 0.0059
ρ(%) 2.70e− 6± 8.54e− 6 0.013± 0.026
X(%) 3.82e− 6± 6.54e− 6 0.023± 0.034

k1 = 10−4, k2 = 10−5

fx(%) 0.00079± 0.0013 0.047± 0.27
fy(%) 0.00079± 0.0013 0.047± 0.27
N(◦) 0.00035± 0.00057 0.012± 0.068
ρ(%) 0.00054± 0.0013 0.029± 0.19
X(%) 0.00089± 0.0011 0.053± 0.18

k1 = −10−4, k2 = 10−5

fx(%) 0.0019± 0.0036 0.020± 0.051
fy(%) 0.0019± 0.0036 0.020± 0.051
N(◦) 0.00058± 0.0018 0.0039± 0.013
ρ(%) 0.00097± 0.0037 0.0067± 0.044
X(%) 0.0016± 0.0031 0.015± 0.042

Table 2: Estimation error with and without modeling lens distortion under different distortion
configurations (k1, k2). We show mean± std of the various estimation errors of the two estimators,
and highlight the best in bold.

3 Sitting People Classifier

In the conclusion of the main paper, we mentioned that the estimator can be further improved by
filtering out people that are not upright such as sitting people. While this can be done by training
a neural network, we show here that a simple sitting people classifier can be built using keypoint
information only.

The HRNet [8] pose detector we adopt in the main paper predicts 17 2-D human body keypoints
for each person. Let xj,i ∈ R2, j ∈ J , {1 · · · 17}, i = 1 · · ·N , where J is the index set of the
keypoints, and N is the number of people in the image. We base our classifier on the following
heuristic: When we use a minimal enclosing ellipse to cover the keypoints detected on a person, the
shape of the ellipse is elongated when the person is standing, whereas for a sitting person, the shape
of the ellipse approaches a circle. Mathematically, we compute the ratio of the two eigenvalues of
the covariance matrix of the 17 keypoints as an indicator of how elongated the ellipse is, i.e., larger
ratio means more likely that the person is standing. The covariance matrix of the i-th person’s
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keypoints reads
covi = 1

|J |
∑
j∈J

(xj,i − x̄i)(xj,i − x̄i)> (17)

where x̄i = 1
|J |
∑
j∈J xj,i is the centroid of the 2-D keypoints on the i-th person.

For an overhead camera from which the keypoints detected on a person concentrate into a small
cluster – more specifically, the ankle and shoulder center point of the person approximately coincide,
the distribution of keypoints is not a good indicator of sitting/standing people. Fortunately, with
wide Field-of-View (FOV) cameras, we expect that even for overhead configuration, the ankle and
shoulder center point pairs appearing on the peripheral of the image do not degrade into a single
dot and thus inform the scale of the scene and the focal length of the camera.

4 More Results on MEVA

4.1 More Visualization on MEVADA

Fig. 1 shows more qualitative results on the MEVADA test set, where in each plot, the estimated
ground plane is superimposed on the RGB image as cyan regular grids (each grid is 2m × 2m).
Bounding boxes and keypoints are shown for the pair of selected people of which the distance is
to be estimated. We show a link connecting the ankle center point of the pair of people with the
estimated distance (in meters) marked on the link. For the bounding boxes, keypoints, and links,
red indicates the two people are less than 2 meters apart and green otherwise. Estimated distance,
as well as the ground truth label collected from human reviewers, are displayed at the top-left corner
of each image.

We found that our system is able to estimate the ground plane and distances reasonably well
for both indoor and outdoor scenarios. Estimated distances are consistent with human labels for
each image and are reasonable with closer examination. Fig 1a, 1b, 1g are examples where people
are fairly close. The model can pick the information up on both ground planes or area with small
elevation such as staircases. In Fig 1c, the distance between the selected people is further than
a sedan, which is typically about 5 meters long. In Fig 1e, the distance from the sideline to the
middle of the court is 7.6 meters that is half of the width of a basketball court. That justifies the
11.9 meter distance estimate which is about 3/4 of the court width.

4.2 Detailed Calibration Results on MEVA

Detailed focal length estimation error on MEVA dataset can be found below:
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Video fx error (%) fy error (%)
2018-03-09.09-06-41.09-10-01.hospital.G301.krtd 4.02 2.92
2018-03-05.13-30-00.13-35-00.bus.G340.krtd 3.57 5.14
2018-03-05.13-25-01.13-30-01.school.G328.krtd 6.67 1.24
2018-03-05.15-55-00.16-00-00.hospital.G341.krtd 6.77 4.56
2018-03-15.08-34-31.08-35-00.school.G299.krtd 10.01 9.91
2018-03-05.13-20-00.13-25-00.hospital.G436.krtd 11.23 10.17
2018-03-07.11-45-09.11-50-09.bus.G340.krtd 12.36 11.55
2018-03-16.08-31-36.08-35-00.school.G330.krtd 13.51 13.59
2018-03-06.15-05-02.15-10-02.school.G336.krtd 16.81 14.00
2018-03-05.10-50-00.10-55-00.hospital.G301.krtd 20.42 12.27
2018-03-05.11-20-00.11-25-00.bus.G340.krtd 22.84 21.71
2018-03-05.14-05-00.14-10-00.hospital.G341.krtd 27.39 25.53
2018-03-07.13-15-01.13-20-01.school.G638.krtd 28.81 29.28
2018-03-05.13-20-01.13-25-00.bus.G505.krtd 20.68 31.19
2018-03-05.14-15-00.14-20-00.hospital.G301.krtd 24.30 31.76
2018-03-05.18-10-00.18-15-00.hospital.G436.krtd 20.43 34.56
2018-03-05.12-25-00.12-30-00.school.G336.krtd 31.78 36.33
2018-03-05.11-15-00.11-20-00.school.G339.krtd 2.57 39.73
2018-03-07.11-35-09.11-40-09.bus.G340.krtd 43.32 43.28
2018-03-05.14-20-00.14-25-00.school.G339.krtd 43.85 37.12
2018-03-07.17-25-03.17-30-03.school.G300.krtd 25.16 46.53
2018-03-05.16-50-00.16-55-00.bus.G509.krtd 46.88 46.88
2018-03-05.13-15-00.13-20-00.bus.G506.krtd 6.45 49.52
2018-03-05.18-25-00.18-29-31.school.G424.krtd 53.60 37.45
2018-03-05.09-50-07.09-55-00.school.G300.krtd 29.69 66.12
2018-03-14.16-20-01.16-25-01.school.G639.krtd 70.27 0.44

Table 3: Focal length estimation error.
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(a) outdoor - ground plane (b) outdoor - ground plane

(c) outdoor - ground plane (d) gym

(e) gym (f) outdoor - ground plane

(g) outdoor - small elevation

Figure 1: More qualitative results on MEVADA.

11



5 URL of the Public Datasets Used in Paper

• Oxford Town Center [5] https://megapixels.cc/oxford_town_centre/

• MEVA [6]: https://mevadata.org/#getting-data

• vPTZ [7]: https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/
vptz/

• POM [2]: https://www.epfl.ch/labs/cvlab/data/data-pom-index-php/

6 Demo Video

The attached video OxfordTownCenterDemo.mov shows a video demo of our end-to-end system
running on the publicly available Oxford Town Center dataset [5]. Fig. 1 of the main paper is taken
from the demo video.

In the left panel, we show the keypoints of each detected person in two colors where red
means the person is within 6 feet from others – potentially unsafe according to social distancing
guidelines [3], and green means the person is at least 6 feet from others and safe. We estimate
the projection matrix K and ground plane parameters N, ρ using all the keypoints detected in the
video in batch mode and visualize the ground plane as the regular grids in cyan overlaid on the
video frames. Each grid cell is 6ft.× 6ft. The calibration parameters are then used in the decoupled
formulation to reconstruct the 3-D coordinates of the ankle center points from which the distances
are measured. The estimated metric distances (in feet) are superimposed (in pink) on the nearest
neighbor (shown as the green/red link) of each person. Green links mean safe and red unsafe.

In the top right panel, we show a top-down view of the scene, where each dot represents a
person, and red means unsafe and green safe.

In the bottom right panel, we show a heat map of individuals considered unsafe (within 6
feet from others) aggregated over time, brighter means higher density, and darker lower density.
The heat map can be used to guide potential safety measures to be taken, for instance, workplace
re-arrangement.
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