
Free-form Description Guided 3D Visual Graph Network for Object Grounding in
Point Cloud (Supplementary Material)

We provide more model detail and experimental results
in this supplementary material. In detail, we provide more
loss function detail in Section A, we provide more ablation
studies in Section B. Section C shows more qualitative
results on ScanRefer [2] and Nr3D [1] dataset. Section D
shows the enlarged figure of model visualization.

A. Loss function

We compute a vector representation for relation phrase
as the edge features between node vli and vlj in language
scene graph Gl. The edge features in 3D visual graph Gu
are extracted from the 3D points within the minimum box
region, which denote the relation features between the node
vui and vuj , and correspond to the edge features in language
scene graph Gl.

The final loss of our model is a linear combination of
the vote loss Lvt [3], abjectness of loss Lobj , bounding
box loss Lb, semantic classification loss Lsm, description
classification loss Lcls and reference loss Lrf . We provide
the implementation detail for the reference loss Lrf in this
supplementary material,

Lrf = L1
rf + L2

rf + L3
rf , (1)

where L1
rf supervises the matching score estimation process

in the nodes pruning step, L2
rf supervises the bounding box

offset regression process in the selected proposals refinement
step, and L3

rf the matching score estimation process in the
prediction model.

In the nodes pruning step, the labels for matching score
are defined as soft distributions based on the IoU between
the Ko 3D bounding box candidates and the ground truth
3D bounding box of target object. L1

rf can be described as:

L1
rf = −

Ko∑
k=1

[
ln
[
Softmax(P 1

s )
]
· l1
]
, (2)

where P 1
s denotes the predicted matching scores, l1 presents

the ground truth labels, Ko is the number of 3D bounding
box candidates.

In the refinement step, the labels for offset regression
are computed using the selected 3D bounding boxes and
the ground truth 3D bounding box of target object. L2

rf can
be described as:

L2
rf = σLsm(Rr, Rgt), (3)

where Rr and Rgt present the predicted offset and its ground
truth respectively, σ is a coefficient and set to 0.1, Lsm

denotes the Smooth-L1 function.
Similarly, the labels are defined as soft distributions

based on the IoU between the K refined 3D bounding box
candidates and the ground truth 3D bounding box of target
object in the prediction model. L3

rf can be described as:

L3
rf = −

K∑
k=1

[
ln
[
Softmax(P 2

s )
]
· l2
]
, (4)

where P 2
s denotes the predicted matching scores, l2 presents

the ground truth labels, K is the number of selected 3D
bounding box candidates and set to 20.

B. Extra ablation studies

For ScanRefer, we measure the percentage of predictions
whose IoU with the ground truth is greater than 0.25 and 0.5.
If there is only a single object of its class in the scene, we
take it as unique, otherwise multiple. For Nr3D, the models
are evaluated by accuracy i.e., whether the model correctly
selects the referred object from the M proposals.

In Table 1, we also perform experiments to show the
impact of the selected proposals number K in 3D visual
graph model. We can see that the accuracy of 3D object
grounding improves steadily using more relation graphs
(while keeping everything else constant) up to K = 20
after which there is a slight drop in accuracy. Therefore,
we use K = 20 in the remaining experiments. An intuitive
explanation is that, when K is too small, the 3D proposals
related to the target will be missed while matching the
language scene graph nodes with the noisy 3D bounding box
candidates. However, if we continue to increase the value of
K, our model will get a comparable performance but it will
cause too many nodes in the subsequent 3D visual graph
model, and the number of model parameters also increases
leading to over-fitting.

C. Extra qualitative results

Figure 1 shows extra 4 qualitative visual grounding
results produced by the ScanRefer [2] method and our
method on the ScanRefer dataset [2] (1-3 columns) and the
Nr3D [1] dataset (last column). From the final outputs, it
can be observed that our proposed method generates better
results than ScanRefer [2].



Unique Multiple Overall
Methods Acc@0.5 Acc@0.5 Acc@0.5

K=5 59.82 16.49 25.04
K=10 64.35 22.91 30.24
K=15 67.10 25.20 33.66
K=20 67.94 25.70 34.01
K=25 67.87 25.64 33.82

Table 1. Comparing the affect of the selected proposals number K.

VoteNet ScanRe. InstanceRe. Ours

Param. 11.2 M 14.4 M 15.7 M 14.6 M
Table 2. Model complexity comparison with SOTA methods.

D. Model visualization

We show the enlarged Figure 4 in manuscript, as shown
in Figure 2.

E. Model Complexity

The complexity of our network (Table 2) is much lower
than InstanceRefer [4] and only slightly more than ScanRe-
fer [2] and VoteNet [3].
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Figure 1. Results of ScanRefer [2] method and our method on ScanRefer [2] dataset (columns 1-3) and Nr3D [1] dataset (last column).



Figure 2. Results of the most relative 3D bounding boxes foreach noun phrase in description guided 3D visual graph module.


