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In the supplementary materials, we provide experiment

details, visual results of different cut filters and different

scale filters, and experiment on NuCLS [1] dataset.

A. Experiment Details

In the experiment, the size of the middle-size nucleus

patch is 42 × 42. For handling different scale nuclei, the

middle-size nucleus patch is resized into 22× 22, 30× 30,

50 × 50, and 62 × 62. Finally, we get five scale nucleus

patches.

For each nucleus patch, the correlation filter template is

calculated with Eqn. (1).

ŵ1 =
x̂∗ � ŷ

x̂∗ � x̂+ λ
, (1)

where x̂ = DFT (x), DFT denotes discrete Fourier trans-

form, x denotes the cyclic shift feature vector extracted

from the image patch Ip, ˆ is a shorthand for the DFT of

a vector, λ is a regularization parameter. x is composed of

two kinds of features: Color Name (CN) features [12] and

Histogram of Oriented Gridients (HOG) [2] features. For

each nucleus patch and the original image, we extract 11
channel CN features and 9 channel HOG features. The size

of extracted feature map are half of size of cut nucleus patch

and the original image.

scale filter size corresponding cut filter size

1 (11× 11) (9× 9), (7× 7) , (5× 5), (3× 3)
2 (15× 15) (13× 13), (11× 11) , (9× 9), (7× 7)
3 (21× 21) (17× 17), (13× 13) , (9× 9), (5× 5)
4 (25× 25) (21× 21), (17× 17) , (13× 13), (9× 9)
5 (31× 31) (27× 27), (23× 23) , (19× 19), (15× 15)

Table 1. The size of correlation filter and corresponding cut filters.

∗Corresponding author. #Equal contribution to this work.
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Figure 1. The discrete weight templates and corresponding 2D

Gaussion surfaces (for simplicity, we only show the single ax-

is values and corresponding 1D Gaussion curve, denoted by red

lines). The values of templates are obtained from the 2D Gaussion

surface by discrete sampling.

Next, the corresponding center patches with differen-

t sizes are cut from each correlation filter. The size of each

correlation filter and the corresponding size of cut correla-

tion filters are summarized in Table 1.

In the CFF & MFF section of the original paper, we de-

fine the discrete weight template Gk for the k-th scale filter

and u-th cut patch template Gk−u from Gk, which are de-

vised for summing the response maps with weights in Gaus-

sian shape. The sum value of Gk equal to zero, the shape of

the template Gk is the same as the 2D Gaussian shape, and

the size of Gk is the same with the k-th scale filter. Fig. 1

gives the Gaussian shape and corresponding cut filter patch

template Gk−u. For simplicity, we only show the single

axis values and corresponding 1D Gaussion curve, denoted

by red lines. The height value a and deviation σ of the 2D

gaussian function ae−
(x−μx)

2σ2 − (y−μy)

2σ2 are 1 and 5, respec-

tively. More details about those weight templates, please

refer to the source code in the “CodeAppendix” file.

For clear description, the definition of Eqn. (2) is de-
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Figure 2. The progressive response maps after CFF, MFF, Top-H/mean, and GDBP.

scribed again as follows:

Sn(i, j) = A
T {G1 � Sn

1 [i, j], .., Gk � Sn
k [i, j]}, (2)

Sn
k (i, j) = A

T {Gk−1 � Sn
k−1[i, j], .., Gk−U � Sn

k−U [i, j]},

where A
T {} denotes accumulating the top T values,

Sn
k−u[i, j] and Sn

k [i, j] denote the patch area of response

map Sn
k−u and CFF map Sn

k centered at position (i, j), re-

spectively. Sn(i, j) and Sn
k (i, j) denote the response value

of MFF map Sn and CFF map Sn
k centered at position (i, j),

respectively.

Sample Synthesis. The ambiguous boundary areas of

nuclei are not involve the training of the segmentation

network, which leads to poor performance on ambiguous

boundary areas. So, we segment some high confidence nu-

cleus areas and paste those areas back into the pure back-

ground images, which are generated with some high confi-

dence background areas.

NuCLS [1] dataset contains 1, 716 samples, the size of

which range from (300 × 300) to (800 × 800). From Fig.

3, we can see that NuCLS [1] dataset contains mixed anno-

tations, part of which are segmentation masks and rest part

are bounding boxes. The train, validation and testing dataset

contain 1000, 361 and 355 samples in the experiment. Due

to the lack of segmentation masks, existing supervised seg-

mentation methods (Mahmood [7], MedT [11], FCN-based

[8], U-Net [10] and Mask R-CNN [3]) cannot be trained on

NuCLS [1] dataset. So, we only give the detection results

of existing methods on NuCLS [1] dataset in Section C.

For the segmentation network Unet [10], hyper-

parameters are set as follows: batch size = 8, learning rate

= 0.0001, weight decay = 1e− 8, and momentum = 0.9.

Figure 3. Samples and annotations of NuCLS [1] dataset. Annota-

tions are mixed segmentation masks and bounding boxes.

B. Visual Results of Different Filters

In the detection branch, Cut Filter Fusion (CFF) and

Multi-scale Filter Fusion (MFF) are devised for handling

crowed nuclei and different scale nuclei. The fusion of top

H response maps of multiple filters obtains the optimal re-

sponses, which eliminates the disturbance of low response

values of some inappropriate correlation templates. Gradi-

ent Direction Based Postprocessing (GDBP) is proposed to

erase the inaccurate response using gradients of each posi-

tion in all directions, which can effectively locate the center

position of nuclei.

For an input image, Fig. 2 shows the progressive de-

tection response maps after CFF, MFF, Top-H, and GBD-

P. ‘size 1’ denotes the size of original filter and ‘size 2-5’

denote the size of cut filters. We can see that small and

large scale filters have high response values for small and

large nuclei, respectively. For the cut filters, the original

filters (‘size 1’) have high response values in the center of

nuclei. The cut filters (‘size 3-5’) have high response val-

ues for the indigo color of nuclei, which leads to the result

that nuclei have high response values and background have

low response values. CFF combines the center responses



Type Unsupervised fully-supervised Ours

Method CAE [5] SSAE [13] Mask R-CNN [3] MCF

N
u

C
L

S Precision 52.53 / 50.43 66.71 / 64.36 70.36 / 66.91 61.28 / 58.76

Recall 68.45 / 65.99 64.02 / 60.27 75.80 / 71.52 74.75 / 69.08

F-score 59.44 / 57.17 65.34 / 62.25 72.98 / 69.14 66.86 / 63.50

Table 2. The detection results of different methods. ‘score 1 / score

2’ denotes the segmentation results of original testing samples of

NuCLS [1] and newly collected cancerous samples.

detected by large size filters (‘size 1-2’) and responses of

nuclei detected by small size filters (‘size 3-5’). The cut

filters have high response for nuclei according nuclei col-

or features, which can detect the crowed nuclei effective-

ly. Meanwhile, MFF and Top H effectively combine the

response values of appropriate scales and optimal response

values of different filters. GDBP effectively locate the posi-

tion of nucleus centers.

C. Results on NuCLS [1] Dataset

In this section, we give the detection results of different

methods on NuCLS [1] dataset, which is shown in Table 2.

Meanwhile, the detection results of cancerous samples are

also given. ‘score 1 / score 2’ denotes the segmentation re-

sults of original testing samples and newly collected cancer-

ous samples. In the experiment, there are 16 nucleus patch

templates for NuCLS [1] dataset. From Table 2, the fully-

supervised method Mask R-CNN [3] achieves the best per-

formance, and the unsupervised method CAE [5] achieves

the worst detection results. With only 16 nuclei patches as

supervision, Recall score of MCF drops by about 1% on

NuCLS [1] dataset compared with fully supervised meth-

ods, which demonstrates that MCF can effectively detect

all the correct nuclei. What’s more, other scores of MCF

only drop by about 3% on the cancerous samples compared

with results on normal samples, which verifies the excellent

robustness of MCF again.

D. Segmentation and Detection Visual Results

More segmentation and detection visual results of differ-

ent methods on TNBC [9], MICCAI18 [6] and cancerous

samples are given in Fig. 4 & 5. The first six rows are

the normal samples from TNBC [9] and MICCAI18 [6], re-

spectively. The last six rows are cancerous samples from the

newly collected cancerous samples. From Fig. 4, we can

see that most of the fully supervised methods (MedT [11],

FCN-based [8], U-Net [10] and Mask R-CNN [3]) achieve

similar and promising results. The unsupervised method

Hou [4] also achieves promising segmentation results on the

normal samples but poor segmentation results on cancerous

samples. On the contrary, MCF still achieves promising re-

sults on cancerous samples, which verifies the excellent ro-

bustness of MCF on cancerous samples. Meanwhile, more

visual detection results are given in Fig. 5. Mask R-CNN [3]

achieves more accurate results than other methods. Com-

pared with the unsupervised method CAE [5], MCF has

better detection peformance. For cancerous samples, MCF

still achieves not bad detection results on cancerous sam-

ples, which demonstrates the excellent robustness of MCF

on degenerated samples again.
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Figure 4. The visualized segmentation results of normal testing samples and cancerous samples.
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Figure 5. The detection visual results of different methods on normal samples and cancerous samples. True Positives (TP), False Positives

(FP), and False Negatives (FN) are marked with green, yellow, and red color points.
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