
8. Supplementary Material
8.1. Training Setup

In all our experiments, we train the MLPs in PyTorch
using the Adam optimizer with default parameters. We su-
pervise the network based on the mean squared error loss
between reconstructed color and ground truth color. We
adopt the cosine annealing learning rate scheduler, with ini-
tial learning rate as 1 × 10−5 and final learning rate as
1 × 10−8. We randomly shuffled all the training samples
and divided them into batches of size equal to 2048. To
ensure reproducibility, we set the random seed as 0.

Unless otherwise noted, we set all networks to have 10
layers with residual connections, where the intermediate
layers having a dimension size of 512×512. We apply layer
normalization after all MLP layers except the final one.

For networks with sine activation functions, we follow
the initialization method suggested by Sitzmann et al. [43].

8.2. Additional Tables and Figures

Table 3: Details of the light field scenes used in exper-
iments. Ix and Iy refer to width and height of a single
image, Iu and Iv refer to angular width and height for the
different viewpoints, It refers to the number of time steps
recorded in a video, and raw byte sizes are calculated with
each RGB pixel represented by three bytes (one byte per
channel).

Scene Iu Iv Ix Iy It Raw Size (MB)
Lego 17 17 1024 1024 1 909
Tarot 17 17 1024 1024 1 909

Bracelet 17 17 1024 640 1 568
Painter 4 4 2048 1088 50 5252
Trains 4 4 2048 1088 50 5252

Table 4: Network parameters used to achieve results
shown in Table 1. C = Cu + Cv + Cx + Cy + Ct as
defined in Section 4. M is the dimension of the MLP lay-
ers. For simplicity we use M ×M square matrices for all
intermediate layers, where M = 512. L refers to the num-
ber of MLP layers, including the first and the last layer.

Scene L C Cu Cv Cx Cy Ct
Lego 10 512 16 16 240 240 0
Tarot 10 512 16 16 240 240 0

Bracelet 10 2048 144 144 1080 680 0
Painter 10 512 0 0 260 180 72
Trains 10 512 0 0 260 180 72



Figure 10: Examples of reconstruction results (left) and absolute errors (right) on the Lego scene. Our SIGNET method
with Gegenbauer input transformation produces the best result. Notice the SIREN method is relatively inaccurate in capturing
the discontinuity near the edges.

Figure 11: Examples of reconstruction results (left) and absolute errors (right) on the Tarot scene. The last three
methods (DiscreteFourierSine, SIREN, and SIGNET) achieve similarly accurate reconstruction, with most of the residual
errors coming from the extreme refraction at the surface of the crystal ball.



Figure 12: Angular Upsampling. At the bottom left corner of the reconstructed view, we show the relative positions of the
reconstructed view (red square) and its four nearest views (blue squares) in the original light field. We present reconstructions
at novel viewpoints from the three static scenes, and we also show results from the deep-learning-based method, LFASR [23],
which is trained specifically for light field angular upsampling. Notice the LFASR results show visible artifacts pointed to by
the yellow arrows, such as distorted geometry and ghosting.


