
A. Implementation Details
A.1. Linear Classification.

For TKC on ResNet-50 [7], we freeze the ResNet-50
backbone and train a linear classifier after the frozen fea-
tures from the global pooling layer. We use the student net-
work as a pre-trained model. The classifier is trained for
100 epochs, with initialized learning rate lr = 30. We set
momentum as 0.9, weight decay as 0, and decay the learn-
ing rate by 0.1 at the 60th epoch and 80th epoch. The batch
size is set to 256 on 8 NVidia-1080ti GPUs.

A.2. Based on BYOL

Pretext Training. In the paper, we have implemented an
experiment based on BYOL [4] to show that TKC can im-
prove different methods (in Table 2). We use the BYOL
baseline based on a pytorch implementation in Momentum2

teacher [10]. Their code is publicly available at https://
github.com/zengarden/momentum2-teacher.

We use momentum SGD with momentum 0.9 and weight
decay 1e-4. We train both the BYOL baseline and our TKC
for 100 epochs, the basic learning rate is 0.05. We use a
warm-up stage at the beginning of training for 10 epochs,
and then cosine decays the learning rate. The batch size
is 256 on 8 NVidia-1080ti GPUs. The data augmentation
and the architecture are the same as the original paper [4],
except that we use batch normalization instead of SyncBN.
The MLP projection head consists of two linear layers, with
a batch norm layer and a ReLU layer between them. Our
TKC+BYOL shares the same setting with the baseline, we
set h as 3, and also use a symmetrized loss.
Linear Classification. The setup of linear classification is
also following the reproduction in [10]. We fetch out the
teacher encoder and freeze its backbone. Then we train a
classifier consisting of a linear layer and a batch norm layer,
following the global average pooling layer in the backbone.
We train for 5 epochs. This reproduction is not strictly reim-
plemented the results in BYOL [4], thus we do not compare
this result with other methods. The results in Table 2 show
that TKC has good scalability, and can improve different
methods.

A.3. Based on AlexNet

Pretext Training. We adopt the AlexNet [8] implementa-
tion in Deep Clustering [1] as the backbone, and addition-
ally append a two-layers MLP behind it, following MoCo
v2 [2]. We train the model on 4 NVidia-1080ti GPUs with
1024 batch size. The learning rate in initialized as 0.24, and
cosine decayed for 200 epochs. We set τ as 0.2, α as 0.9,
following MoCo v2 [2]. Differently, we set the number of
negative samples K as 8192 to accelerate training.
Linear Classification. In this section, we freeze the back-
bone of the student model and train a classifier containing a

linear layer with 1000 output dimensions after the backbone
for 100 epochs. The initial learning rate is set as 0.01, and
decayed by 0.1 at the 60 th epoch and 80 th epoch.

A.4. Linear Detection and Segmentation

Object Detection on PASCAL VOC. We have performed
linear detection on PASCAL VOC in Table 5 to show that
TKC learns better representations for object detection. We
use Faster R-CNN [11] detector based on Detectron2 [12].
The backbone ends with conv5 stage and is set frozen.
The training hyperparameters are kept consistent with fine-
tuning, except the backbone is frozen. We train it for 48k
iterations on VOC07+12 trainval. The initial learning rate
is 0.02 and decayed at 36k and 44k iterations. The warmup
stage lasts for 200 iterations.
Object Detection and Instance Segmentation on COCO.
We have also implemented linear detection on COCO. We
use Mask R-CNN [6] detector based on Detectron2 [12],
and synchronously train the object detection head and the
instance segmentation head following [5], meanwhile we
freeze the backbone. We also use a 2x scheduler the same
as finetuning, where we train it for 180k iterations. The
size of the shorter side is in [640,800] pixels during training
and is fixed as 800 at inference. We use 8 GPUs and 16
batchsize.

B. Architecture of History Bank

We use history bank as a more effective implementation
of the temporal teacher. Fig 4 illustrates the architecture
and mechanism of history bank. The history bank is a ma-
trix with size of D rows and h columns. D is the train
set, h is the number of temporal teachers. A row of history
bank stores the features from the same image but different
teachers, while a column of history bank stores the ones
from the same teacher but different images. This matrix can
be saved at CPU memory, with no need to allocate the GPU
memory. We illustrate the history bank by the blue cube in
Fig 4.

For a sample x, we first get the feature rS0 from the
student model, and the feature rTn from the EMA teacher
model. Then we fetch out all the features from the same
image x from the history bank as zTn−h ∼ zTn−1, as shown
in the middle in the Fig 4. For the implementation based
on MoCo, we also fetch out the negative samples from the
history bank. For each zTj j ∈ [n − h, n − 1], the corre-
sponding negative features are randomly selected from the
same column in the history bank as r−j . For the implementa-
tion based on BYOL, there is no need of the negative sam-
ples. History bank is an effective implementation of tem-
poral teacher, the training procedure is the same as in the
paper.

1

https://github.com/zengarden/momentum2-teacher
https://github.com/zengarden/momentum2-teacher

Loss

......

from the same teacher

......

......

......

......

......

......
......

from the same image

Figure 4. The architecture of history bank. History bank is an
effective implementation of the temporal teacher. A row in the his-
tory bank stores the features from the same image, a column in the
history bank stores the features from the same teacher. The green
cubes indicate positive features, the grey cubes indicate negative
features.

C. Computational Cost
We compare the computational cost of the two methods

to show the efficiency of TKC. TKC use the history bank to
approximate the temporal teachers. History bank stores the
features of the recent epochs in CPU memory, and only part
of them corresponding to the current batch will be dumped
to GPU memory. This optimization can avoid duplicate for-
warding, and the features from history bank are the same as
forwarding the image into the temporal teachers.

Method GPU batchsize GPU·Time/Epoch memory/GPU
MoCo v2 8×2080ti 256 3.4h 4.9G
TKC 8×2080ti 256 5.0h 5.0G

Table 10. Computational cost. We report the time the GPU mem-
ory cost of our method and MoCo v2 baseline.

TKC has not too many additional costs thanks to his-
tory bank. As shown in Table 10, TKC has similar mem-
ory allocation with MoCo v2, which indicates that TKC has
no special requirements for the capacity of machines. The
time cost is higher than MoCo v2 for 47 %, which is mainly
from the matrix multiplications between temporal features
rTj , j ∈ [n − h, n − 1] and rS0 , the knowledge transformer,
and the data transport between memory and GPU memory.

D. Further analysis
D.1. More Experiment on AlexNet Backbone

In this section, we implement MoCo v2 based on
AlexNet [8] backbone to show that the temporal knowl-
edge introduced by TKC can improve instance discrimina-

Method conv1 conv2 conv3 conv4 conv5
MoCo v2 [2] 17.2 26.6 36.5 39.0 42.8
TKC 20.3(+3.1) 34.2(+7.6) 42.6(+6.1) 46.2(+7.2) 44.0(+1.2)

Table 11. Comparison with MoCo v2 baseline on AlexNet.

tion methods on the different backbone. In Table 3, we only
compare TKC with SOTA methods, here we supplement
the result of MoCo v2. The MoCo v2 baseline follows the
same setup with TKC. As shown in Table 11, TKC outper-
forms MoCo v2 baseline for all conv1 to conv5. The results
from the bottom layers have more improvements, the re-
sults on conv4 especially surpass MoCo v2 for 7.2 %. This
may because the temporal knowledge brought by the pre-
vious teachers can introduce the consistency between dif-
ferent epochs. The consistency can especially mitigate the
dramatically changes and accelerates the convergence of the
bottom layers.

D.2. Relation to No EMA Methods

Some recent works [3] claim that the EMA encoder is not
necessary to prevent model collapse. However, their works
have no conflict with our work. SimSiam has shown that the
stop gradient but not the EMA encoder is the key to prevent
model collapse, but it also admits that the EMA encoder can
improve accuracy (in the last paragraph in Section 2). Table
4 in [3] reveal that SimSiam with EMA encoder (BYOL)
surpasses it by 3.0% for 800 epochs training, which shows
that EMA encoder is important to learn good representa-
tions. However, the EMA encoder is not good enough, for
it can not learn the temporal consistency between different
training stages, as shown in our works.

We note that all the reproductions in [3] applies the sym-
metrized loss. Section 4.6 in [3] shows that the symmetrized
loss can boost the accuracy for 3%, and the computational
cost has also doubled. So comparing TKC which is asym-
metric to the symmetric methods [4, 3] is unfair. Our im-
provement based on BYOL shows that the temporal knowl-
edge is orthogonal to the symmetric loss. We consider pro-
viding the result of symmetric TKC in the next version and
compare it with the symmetric methods.

D.3. Does TKC improve the consistency?

In this section, we visualize the inconsistency during
training and indicate that TKC can improve the stability
during pretext training. We randomly select some images
and compare the stability of each sample between TKC and
MoCo v2 baseline.

Firstly, We define stability of a sample as the cosine simi-
larity between current teacher output rTn and the counterpart
in the last epoch zTn−1. The formulation is:

stable(x) = rTn · zTn−1 (8)

2

Figure 5. Comparison of stability between two methods in some randomly selected samples. The red curve represents MoCo v2, and the
green curve represents TKC. The curves demonstrate that TKC can lead a consistent training and yield better representations.

Then we randomly select some samples from the training
set and compute the stability of these samples respectively
during the whole training procedure. We compute the sta-
bility for both MoCo v2 [2] baseline and TKC. Each figure
in Fig 5 represents the stability of the same sample in differ-
ent methods, the red curve represents MoCo v2, the green
curve represents TKC.

As shown in Fig 5: (1) The output of the teacher model
can dramatically vary even in the later stage during train-
ing. The stability of the samples usually gets down below
0.8 shows that the training target is inconsistent. Also, the
stability is changed a lot in different epochs. These phenom-
ena have confirmed our hypothesis that the targets from the
teacher are noisy and inconsistent. (2) The stability of TKC
is totally better than MoCo, where the green curve is higher
than the red curve as a whole, which shows that the temporal
knowledge from our method can lead to a more consistent
training procedure, and improve the quality of the teacher’s
output.

D.4. Ablation study about knowledge transformer

structure of KT Top-1 Top-5
2-layer 65.91 87.07
4-layer 66.21 87.04
2-layer bottleneck 66.31 87.11

Table 12. Ablation study about knowledge transformer. All exper-
iments are run on ResNet-50 for 100 epochs.

In this section, we conduct ablation studies on different

structures of the knowledge transformer, as shown in the ta-
ble 12. All models are trained on ResNet50 for 100 epochs.
In our work, we use an MLP to implement the knowledge
transformer. This MLP consists of a linear layer with output
dimension 256 followed by a ReLU nonlinearity and a final
linear layer with output size 256. This structure can reach
an accuracy of 65.91. We observe that increasing the layer
of MLP can better extract the importance of different teach-
ers to achieve better performance. The 4-layer MLP can
further improve the top-1 accuracy to 66.31. And a design
of bottleneck MLP can also boost the performance, where
we change the hidden size from 256 to 4096 to obtain a
bottleneck structure. This structure can boost the result to
66.21 with less additional computational cost. These results
show that the temporal teacher depends on the knowledge
transformer to leverage the importance of different teach-
ers. Using more complex structures as attention may further
improve the performance. We will explore it in future work.

E. Difference with Related Works

Some previous works also involve information from pre-
vious periods. MoCo [5] and Temporal Ensembling [9] both
use the samples from previous training. In this section, we
will clarify the difference between TKC and their works in
both motivation and methodology.
Difference with MoCo v2. MoCo [5] believe that a large
and consistent group of negative samples is critical for con-
trastive learning, and use the EMA encoder to construct a

3

large and consistent negative bank. They think that the neg-
ative samples from previous training stages are harmful, and
only use the negative samples which are near in time.

In our work, we notice that the outputs of the teacher can
vary dramatically on the same sample during different train-
ing stages, which can introduce unexpected noise and lead
to catastrophic forgetting caused by inconsistent objectives.
We believe that the knowledge from previous stages is es-
sential to learn the instance temporal consistency and stable
the position of the teacher’s outputs in the latent space. Em-
pirically results show that the output of temporal teachers
can provide the temporal knowledge and gain the perfor-
mance. Note that our negative bank is all consistent [5],
for we use the negative samples from the same teacher to
compute the temporal loss in Eq 4.
Difference with Temporal Ensembling. Temporal Ensem-
bling [9] is a semi-supervised learning method that ensem-
ble the output of the same sample from previous epochs
as the predicting target. Their work is different from ours
in this aspect: (1) Temporal Ensembling relies heavily on
dropout regularization to obtain various outputs in different
epochs to yield a more accurate target. TKC also works
well with networks without dropout layer [7], for TKC can
restrict consistency between different epochs. (2) Tempo-
ral Ensembling also uses an exponential moving average
to ensemble the output from different epochs, which can’t
leverage the importance of different outputs. On the con-
trary, TKC preserves the temporal teacher independently
and uses knowledge transformer to dynamically learn their
importance.

[1] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning
of visual features. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 132–149, 2018. 1

[2] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020. 1, 2, 3

[3] Xinlei Chen and Kaiming He. Exploring simple siamese
representation learning. arXiv preprint arXiv:2011.10566,
2020. 2

[4] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in Neural Information
Processing Systems, 33, 2020. 1, 2

[5] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2020. 1, 3, 4

[6] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 1

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016. 1, 4

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, 2017. 1,
2

[9] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. International Conference on Machine
Learning, 2017. 3, 4

[10] Zeming Li, Songtao Liu, and Jian Sun. Momentumˆ 2
teacher: Momentum teacher with momentum statistics for
self-supervised learning. arXiv preprint arXiv:2101.07525,
2021. 1

[11] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015. 1

[12] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 1

4

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

