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We provide additional evaluations and visual results for
our main models, that support the conclusions in the pa-
per. In order to show the generalization capabilities of our
approach, we provide results on a third dataset (BSD100).
Also, in addition to PSNR, SSIM, LPIPS and FID, we
calculate popular no-reference metrics (Ma, NIQE, PI) on
DIV2K and discuss their limitations for perceptual quality
assessment. We also show an ablation study for our pro-
posed Fourier space GAN architecture.

1. Quantitative Evaluations
The evaluation on 3 different datasets show the bene-

fits and generalization capabilities of our proposed losses in
comparison to previous approaches. The application of our
losses directly in Fourier domain improves not only the per-
ceptual quality, but also the restoration quality at the same
time.

1.1. Urban100

In Tab. 1 we show the results of additional methods on
Urban100 [5]. As already discussed, our losses show simi-
lar performance as on DIV2K (validation), which shows the
generalizability of our proposed loss functions. Again, ES-
RGAN (Our losses) achieves the highest perceptual scores
with a substantial improvement in FID of −1.43 over the
version without our losses. Our losses in conjunction with
IMDN [6] achieve comparable results with SRFlow despite
the enormous difference in runtime (41ms vs. 1995ms).
Ours (Full), our efficient implementation, outperforms all
versions of RankSRGAN in every metric, and is also faster
at inference time.

1.2. BSD100

In addition to DIV2K(val) and Urban100, we evaluate
the performance also on BSD100 [9], another commonly
used dataset, see Tab. 2. Again, ESRGAN (Our losses) per-
forms best in terms of perceptual quality and also achieves
high restoration quality. SRFlow has high restoration qual-
ity but can not compete in perceptual quality in comparison

to all other methods. Ours (Full) outperforms all RankSR-
GAN models in all metrics, only RankSRGAN (NIQE)
achieves a lower FID score.

1.3. DIV2K - No-reference Metrics

No-reference metrics are handcrafted quality assessment
tools to quantify image quality without comparison to a
ground truth. However, these metrics are limited for objec-
tive image quality quantification, because of the lacking ref-
erence. We would like to learn the true target distribution.
We therefore chose FID [3] as a quality measure for distri-
butional similarity, which together with LPIPS [12] quanti-
fies perceptual quality.

Nevertheless, we list the results for no-reference qual-
ity metrics Ma [8], NIQE [10] and PI [2] for DIV2K in

Method ↑PSNR ↑SSIM ↓LPIPS ↓FID

SRFlow [7] 25.25 0.735 0.127 26.22
ESRGAN (Our losses) [11] 25.05 0.738 0.120 24.07
ESRGAN [11] 24.36 0.717 0.123 25.50
RankSRGAN (Ma) [13] 24.12 0.704 0.143 27.72
RankSRGAN (NIQE) [13] 24.52 0.715 0.143 27.47
RankSRGAN (PI) [13] 24.47 0.716 0.139 27.84
Ours (Full) 24.69 0.723 0.132 26.70

Table 1. Evaluation on Urban100 [5]. Red indicates best, blue
second best.

Method ↑PSNR ↑SSIM ↓LPIPS ↓FID

SRFlow [7] 26.08 0.667 0.183 66.24
ESRGAN (Our losses) [11] 25.79 0.658 0.158 57.90
ESRGAN [11] 25.34 0.643 0.161 60.42
RankSRGAN (Ma) [13] 25.06 0.633 0.183 65.75
RankSRGAN (NIQE) [13] 25.52 0.642 0.178 61.52
RankSRGAN (PI) [13] 25.48 0.643 0.175 63.97
Ours (Full) 25.66 0.656 0.172 62.25

Table 2. Evaluation on BSD100 [9]. Red indicates best, blue sec-
ond best.



Method ↑Ma ↓NIQE ↓PI

RankSRGAN (Ma) [13] 6.8142 2.6143 2.9000
RankSRGAN (NIQE) [13] 6.6923 2.7121 3.0099
RankSRGAN (PI) [13] 6.6794 2.6851 3.0029
SRFlow [7] 6.5230 3.5421 3.5095
ESRGAN (Our losses) [11] 6.5580 3.0388 3.2404
ESRGAN [11] 6.5937 3.0918 3.2491
Ours (WaveletSRNet losses) [4] 5.9682 4.9011 4.4664
Ours (Full) 6.6792 3.0836 3.2022

Table 3. Evaluation of no-reference metrics on DIV2K. Red indi-
cates best, blue second best.

Tab. 3. As expected, the RankSRGAN [13] models per-
form the best, as they are explicitly trained with these met-
rics. Therefore, a direct comparison to all other methods
is not fair. Interestingly, RankSRGAN (Ma) outperforms
all other RankSRGAN models, even those that are trained
for these specific metrics, which is unexpected. It is un-
clear why these inconsistencies arise, since RankSRGAN is
trained for exactly these metrics.

Among the methods that are not explicitly trained for
these metrics, our losses applied to ESRGAN and IMDN
achieve the best results overall. Ours (Full) achieves the
highest Ma and PI scores, ESRGAN (Our losses) achieves
the best NIQE score.

2. Visual Results

We show a series of visual examples on all 3 datasets
to asses the quality by visual inspection. In addition we
provide PSNR and LPIPS for each method as quantitative
metrics for restoration and perceptual quality respectively.

The metrics are in line with our quantitative evaluation
overall. Note, we deliberately show some cases where the
individual scores do not exactly match our overall quanti-
tative evaluation. These differences on individual images
arise due to different strengths and weaknesses of each
method.

The application of our losses in general improves the
restoration- and perceptual quality, as can be seen by
the examples of ESRGAN, ESRGAN (Our losses) and
Ours (Full). Our efficient setting with IMDN as genera-
tor achieves comparable performance to the larger model
ESRGAN and especially the largest model SRFlow with
highly improved runtimes. Ours (Full) in general also
improves perceptual and restoration quality in comparison
with RankSRGAN. Additionally, we observed that SRFlow
tends to generate noisy output, even in areas of uniform
color. ESRGAN tends to produce excess edges.

Method ↑PSNR ↑SSIM ↓LPIPS ↓FID

Ours (Config. 5, LF,3
GAN ) 29.02 0.792 0.126 17.51

Ours (Config. 5, LF,5
GAN ) 29.06 0.796 0.129 17.17

Ours (Config. 8, LF,3
GAN ) 28.32 0.770 0.122 16.19

Ours (Config. 8, LF,5
GAN ) 28.42 0.776 0.124 15.88

Table 4. Ablation of FFTGAN architecture on DIV2K [1]. Red
indicates best.

3. Fourier GAN Architecture - Ablation
We provide additional analysis of our Fourier space

GAN loss by training a smaller architecture with a reduced
number of layers. We compare the full size GAN architec-
ture (LF,5

GAN ) with a reduced GAN architecture where the
number of layers is set to 3 (LF,3

GAN ). We test this setup in
configuration 5 and 8 from our ablation study in Tab. 4. The
higher complexity discriminator achieves consistently bet-
ter scores in PSNR, SSIM and FID in both configuration 5
and 8. LPIPS is slightly improved when using LF,3

GAN . We
suspect this could be in trade-off with FID due to an in-
creased weight on the VGG-loss during training, when the
discriminator is weaker.
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Target SRFLow RankSRGAN (NIQE)

ESRGAN ESRGAN (Our Losses) Ours (Full)

(PSNR / LPIPS) (28.37 / 0.098) (28.05 / 0.076)

(28.00 / 0.074) (28.48 / 0.079) (28.11 / 0.080)824

Figure 1. Visual examples on DIV2K, image 824.

Target SRFLow RankSRGAN (NIQE)

ESRGAN ESRGAN (Our Losses) Ours (Full)

(PSNR / LPIPS) (29.27 / 0.125) (28.93 / 0.116)

(29.04 / 0.107) (29.29 / 0.110) (28.78 / 0.110)850

Figure 2. Visual examples on DIV2K, image 850.
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