A. Appendix
A.1. Implementation details

Architectures We borrow the generator and discrimina-
tor architectures from StyleGAN2 with two modifications;
(1) The latent code is adapted to our formulation and forms
a concatenation of three separate latent codes: y, u®"",
w¥™e°"" (ii)) We do not apply any noise injection during
training. A brief summary of the architectures is presented
in Tab. 4 and 5 for completeness. The architecture of the
feed-forward encoders trained in the synthesis stage is influ-
enced by StarGAN-v2 [5] and presented in Tab. 6. Note that
we do not use any domain-specific layers and our model is
able to generalize to unseen domains (e.g. labeled attribute)
at inference time (e.g. new face identities in CelebA).

Optimization In the disentanglement stage, we optimize
over a single u""“°"" embedding per image (dim = 64), a
single y embedding per known attribute (dim = 512) and
the parameters of . (dim = 64) and G. We set the learn-
ing rate of the latent codes to 0.01, the learning rate of the
generator to 0.001 and the learning rate of the encoder to
0.0001. The penalty of the uncorrelated bottleneck is set to
Ay = 0.001. We train the disentanglement stage for 200
epochs. For each mini-batch, we update the parameters of
the models and the latent codes with a single gradient step
each. In the synthesis stage, we add two encoders to in-
fer the latent codes learned in the disentanglement stage di-
rectly from an image. We also optimize a discriminator in
an end-to-end manner to increase the perceptual fidelity of
the images. This stage is trained for 100 epochs and the
learning rate for all the parameters is set to 0.0001.

Baseline models For the evaluation of competing meth-
ods, we use the following official publicly available pre-
trained models: Lifespan [28] and SAM [1] (for age edit-
ing on FFHQ), StarGAN-v2 (for AFHQ and CelebA-HQ)
and StyleGAN (for mGANprior on CelebA-HQ). We train
the rest of the baselines using the official repositories of
their authors and make an effort to select the best configu-
rations available for the target resolution (for example, FU-
NIT trained by us for AFHQ achieves similar results to the
public StarGAN-v2 which was known as the SOTA on this
benchmark).

Evaluation Protocol We assess the disentanglement at
two levels: the learned representations and the generated
images. At the representation level, we follow the proto-
col in LORD [10] and train a two-layer multi-layer percep-
tron to classify the labeled attributes from the learned un-
correlated codes (lower accuracy indicates better disentan-
glement). In CelebA, where annotations of part of the un-
correlated attributes are available (for evaluation only) such

as 68-facial landmark locations, we train a linear regres-
sion model to locate the landmarks given the learned iden-
tity codes (higher error indicates better disentanglement).
At the image level, we follow StarGAN-v2 and translate
all images in the test set to each of the other domains mul-
tiple times, borrowing correlated attribute codes from ran-
dom reference images in the target domain. We then train
a classifier to classify the domain of the source image from
the translated image. A lower accuracy indicates better dis-
entanglement as the source domain does not leak into the
translated image. We also compute FID [13] in a condi-
tional manner to measure the discrepancy between the dis-
tribution of images in each target domain and the corre-
sponding translations generated by the models. A lower
FID score indicates that the translations are more reliable
and better fit to the target domain. FID between real train
and test images of the same domain forms the optimal score
for this metric. In order to assess the diversity of transla-
tion results, we measure the perceptual pairwise distances
using LPIPS [37] between all translations of the same in-
put image. Higher average distances indicate greater di-
versity in image translation. In cases where external an-
notation methods are available (for evaluation only), such
as face recognition [3] and head pose [30] and landmark
detection for CelebA, we further measure the similarity of
the identity of the generated face and the reference, as well
as expression (represented by landmarks) and head pose
errors. To validate that the head pose and expression are
distributed evenly across identities, we use landmark an-
notations together with pose-related attributes from CelebA
(Open Mouth and Smiling) and train a classifier to infer the
identity. The accuracy of this classifier (0.001) forms the
optimal result for the representation metric. For translating
males to females on CelebA-HQ, we measure the accuracy
of fooling a target classifier trained on real images, as well
as FID to evaluate how the images fit the target domain.

A.2. Datasets

FFHQ [19] 70, 000 high-quality images containing con-
siderable variation in terms of age, ethnicity and image
background. We use the images at 256 x 256 resolution.
FFHQ-Aging [28] provides age labels for these images.

AFHQ [5] 15,000 high quality images categorized into
three domains: cat, dog and wildlife. We follow the proto-
col used in StarGAN-v2 and use the images at 256 x 256
resolution, holding out 500 images from each domain for
testing.

CelebA [24] 202,599 images of 10,177 celebrities. We
designate the person identity as class. We crop the images
to 128 x 128 and use 9,177 classes for training and 1,000
for testing.

CelebA-HQ [18] 30,000 high quality images from
CelebA. We set the gender as class. We resize the images



to 256 x 256 and leave 1,000 images from each class for
testing. The masks provided in CelebAMask-HQ [21] are
used to disentangle the correlated hairstyle.

Edges2Shoes [35] A collection of 50,000 shoe images
and their edge maps.

Training resources Training each of the models pre-
sented in this paper takes approximately 3 days for 256x256
resolution on a single NVIDIA RTX-2080 TI.

A.3. Additional results

We provide additional qualitative results on facial age
editing (Fig. 8, 9, 10), identity transfer (Fig. 15), pose-
appearance translation (Fig. 12, 13), Male-to-Female trans-
lation (Fig. 14) and Shape-Texture transfer (Fig. 18).

A 4. Latent optimization

In this work, we opt for learning the representation of the
unlabeled uncorrelated attributes (u""“°"") using latent op-
timization, similarly to LORD [10]. Autoencoders assume
a parametric model, usually referred to as the encoder, to
compute a latent code from an image. On the other hand,
we jointly optimize the latent codes and the generator (de-
coder) parameters. Since the latent codes are learned di-
rectly and are unconstrained by a parametric encoder func-
tion, our model can recover all the solutions that could be
found by an autoencoder, and reach some others. In or-
der to justify this design choice, we validate the observation
presented in [10] stating that latent optimization improves
disentanglement and train our disentanglement stage in an
amortized fashion using F,. As can be seen in Fig. 19,
amortized training fails to reduce the correlation between
the labeled and unlabeled representations. We have experi-
mented with several decay factors (), in Eq. 6). Although
the disentanglement improves as )\, increases, the recon-
struction gets worse and the model fails to converge with
Ap > 0.1.

A.S. Visualization of ablation analysis

Examples from the ablation analysis are provided in
Fig. 16. Visualization of the three sets of attributes mod-
eled by our method is provided in Fig. 17.
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Figure 8: An extended comparison of disentangling age and unlabeled attributes (e.g. identity). Our general method performs
better on age-editing than the two task-specific baselines which rely on a supervised identity loss.
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Figure 9: More qualitative results of facial age editing. Our model makes more significant changes (e.g. hair color) while
preserving the identity better than the baselines.
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Figure 10: More qualitative results of facial age editing with our model.
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Figure 11: Comparison against LORD in the presence of correlated attributes (AFHQ). LORD does not distinct between
correlated and uncorrelated attributes and can not utilize a reference image e.g. translating the cat into a wild animal is poorly
specified and results in a tiger instead of a leopard. Moreover, the generated images exhibit low visual quality which is further
improved by our method. FUNIT and StarGAN-v2 leak some of the correlated attributes such as the lion’s mane and the
dog’s facial shape, leading to unreliable translation between species.
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Figure 12: More qualitative results on AFHQ.
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Figure 13: More qualitative results on AFHQ.
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Figure 14: More qualitative results of Male-to-Female translation in two settings: (i) When the attributes are assumed to be
uncorrelated. (i1) When we model the hair style as the correlated attribute and utilize a reference image specifying its target.
Our method preserves the uncorrelated attributes including identity, age and illumination better than StarGAN-v2.
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Figure 15: More qualitative results on CelebA in the task of translating facial identities (left column) across different unla-
beled head poses, expressions and illumination conditions (top row).
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Figure 16: Qualitative examples from the ablation analysis; (i) w/o °°"": Leaving the correlated attributes intact leads to
unreliable and entangled translations. (ii) w/o adv.: Disentanglement is achieved without the adversarial loss, which mostly
contributes to the visual fidelity.
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Figure 17: Visualization of the three sets of attributes modeled by our framework. Changing the labeled attribute (e.g. To
cat, dog, wild) while leaving the unlabeled correlated attributes intact affects high level semantics of the presented animal,
although can generate unreliable translations (e.g. rightmost image in ”To Dog”). Guiding the correlated attributes by a
reference image allows for specification of the exact target appearance (e.g. breed). The remaining unlabeled and uncorrelated
attributes mainly encode the pose of the animal.
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Figure 18: More qualitative results on Edges2Shoes.



Table 4: Generator architecture based on StyleGAN2. StyleConv and ModulatedConv use the injected latent code composed

uncorr

of y, u

corr
k)

u

Layer Kernel Size Activation Resample Output Shape
Constant Input - - - 4 x4 x512
StyledConv 3x3 FusedLeakyReLLU - 4 x4 x 512
StyledConv 3x3 FusedLeakyReLU UpFirDn2d 8 x 8 x 512
StyledConv 3x3 FusedLeakyReLU - 8 x 8 x 512
StyledConv 3x3 FusedLeakyReLU UpFirDn2d 16 x 16 x 512
StyledConv 3x3 FusedLeakyReLU - 16 x 16 x 512
StyledConv 3x3 FusedLeakyReLU UpFirDn2d 32 x 32 x 512
StyledConv 3x3 FusedLeakyReLU - 32 x 32 x 512
StyledConv 3x3 FusedLeakyReLU UpFirDn2d 64 x 64 x 512
StyledConv 3x3 FusedLeakyReLLU - 64 x 64 x 512
StyledConv 3x3 FusedLeakyReLU UpFirDn2d 128 x 128 x 256
StyledConv 3x3 FusedLeakyReLU - 128 x 128 x 256
StyledConv 3x3 FusedLeakyReLU UpFirDn2d 256 x 256 x 128
StyledConv 3x3 FusedLeakyReLU - 256 x 256 x 128
ModulatedConv 1x1 - - 256 x 256 x 3

Table 5: Discriminator architecture based on StyleGAN2.

Layer Kernel Size Activation Resample Output Shape
Input - - - 256 x 256 x 3
Conv 3x3 FusedLeakyReLU - 256 x 256 x 128
ResBlock 3x3 FusedLeakyReLU UpFirDn2d 128 x 128 x 256
ResBlock 3x3 FusedLeakyReLU UpFirDn2d 64 x 64 x 512
ResBlock 3x3 FusedLeakyReLU UpFirDn2d 32 x 32 x 512
ResBlock 3x3 FusedLeakyReLU UpFirDn2d 16 x 16 x 512
ResBlock 3x3 FusedLeakyReLU UpFirDn2d 8 x 8 x 512
ResBlock 3x3 FusedLeakyReLU UpFirDn2d 4 x4 x 512
Concat stddev 3x3 FusedLeakyReLU UpFirDn2d 4 x4 x513
Conv 3x3 FusedLeakyReLU - 4 x4 x 512
Reshape - - - 8192
FC - FusedLeakyReLLU - 512

FC

1




Table 6: Encoder architecture based on StarGAN-v2. Note that we do not use any domain-specific layers. D is the dimension

of y, u®™, u"™°°"" respectively.
Layer Kernel Size Activation Resample Output Shape
Input - - - 256 x 256 x 3
Conv 3x3 - - 256 x 256 x 64
ResBlock 3x3 LeakyReLU (o = 0.2) AvgPool 128 x 128 x 128
ResBlock 3x3 LeakyReLU (av = 0.2)  Avg Pool 64 x 64 x 256
ResBlock 3x3 LeakyReLU (o = 0.2)  Avg Pool 32 x 32 x 256
ResBlock 3x3 LeakyReLU (v = 0.2)  Avg Pool 16 x 16 x 256
ResBlock 3x3 LeakyReLU (o« = 0.2)  Avg Pool 8 x 8 x 256
ResBlock 3x3 LeakyReLU (o = 0.2)  Avg Pool 4 x 4 x 256
Conv 4 x4 LeakyReLU (a = 0.2) - 1 x1x 256
Reshape - - - 256
FC - - - D
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Figure 19: Evidence for the inductive bias conferred by latent optimization on AFHQ (a validation of the discovery presented
in [10]). We plot the accuracy of an auxiliary classifier predicting the labeled attributes from the learned representations of
the unlabeled attributes. Latent optimization starts with randomly initialized latent codes and preserves the disentanglement
of the labeled and unlabeled representations along the entire training (the accuracy matches a random guess). In contrast, a
randomly initialized encoder (amortization) outputs entangled codes. In order to reach disentanglement, the encoder should
distillate the information of the labeled attributes during the optimization, which is shown to be unsuccessful in practice.



