
Category # Train Instances # Test Instances # Test Pose Initializations

Scissors 37 9 90
Knife 18 4 40
USB 15 3 30
Safe 18 4 40
Pliers - 24 48
Microwave - 9 18
Lighter - 11 22
Eyeglasses - 33 66
Multilink - 10 20

Total 88 107 374

Table 3. Instance Counts. Details about the number of assets and
testing pose initializations.

A. Data Generation
In this section we give more details about our data gen-

eration pipeline for Act the Part (AtP).

A.1. Assets
For object asset data, we use instances from eight cate-

gories from the Partnet-Mobility [9, 29, 49] dataset and a
ninth multilink category of our creation—configured with
three links in a chain. Examples from each category are
shown in Fig. 10. Number of instances for train splits, test
splits, and the number of initial poses per category for test-
ing can be found in Tab. 3.
Partnet-Mobility. Object categories were selected for re-
alism in table-top environments and provide opportunity
for reasonable exploration of the hold and push action pair.
For this work, we also consider top-down views, which are
commonly used in robot bin clearing tasks. Notably, not
enough categories with prismatic joint (e.g., furniture) fit
these parameters. We leave tackling such objects to future
work. We additionally filtered instances with missing 3D
object meshes or unstable physical dynamics.
Multilink. Our multilink instances are composed of three
links, with an ellipsoid flanked by two prisms. Each link
is assigned a random color by sampling R, G, and B val-
ues uniformly with replacement. Joint angles take values
in the range [�5⇡/18, 5⇡/18] radians. We also introduce
tooling to create arbitrary multilink instances with mesh
primitives, which can be used in future work and applica-
tions. Note: procedurally generated multilink assets follow
Partnet-Mobility conventions. Code for generating the mul-
tilink objects will be available online.

A.2. Physics Simulator
Our Simulation platform is based on Pybullet [11], a

state-of-the-art physics simulator and wrapper for the Bullet
Physics Library. Pybullet is widely used in vision, robotics,
and reinforcement learning.
Image Backgrounds. We use wood textured backgrounds
sourced from Kaggle1. The original data is scraped from the

1kaggle.com/edhenrivi/wood-samples

Wood Database2. We use 421 backgrounds from the dataset
and partition into three sets: 141 instances for training, 140
for testing unseen instances from seen categories, and 140
for testing unseen categories. When initializing the Pybullet
environment, depending on the train or evaluation setting, a
background is drawn uniformly at random. For the testing,
this is done once and initialization conditions are frozen to
ensure a fixed benchmark. All initial poses and correspond-
ing backgrounds will be released in our project code release.
Simulating Touch Feedback. We simulate sheer force
touch feedback in our hold gripper. The touch feedback
is measured by sensing constraint forces on the hold grip-
per. These are non-zero when hold and push are both on
the same object. The existence of a constraint force indi-
cates that the gripper must hold more forcefully to keep a
point on the object fixed. While we can obtain rich signal
including direction and magnitude of the forces, we limit
our agent to a binary signal, which is more reliable in real
world settings.

B. History Aggregation
Full Part memory. It is possible that all channels in part
memory V are full when we want to allocate a new part
Mt+1. In these cases, we assign to the channel c with the
largest overlap with Mt: V c (V c� (Mt \V c))[Mt+1.
This assignment potentially entangles two masks. All such
cases are classified as entangled parts.
Perspectives on History Aggregation. The algorithm can
be viewed as maintaining V as a hidden state. However,
we opt to use our history aggregation module instead of an
RNN. Training an RNN would require pseudo-labels, which
realistically come from this algorithm or additional ground
truth supervision.
Implementation Details. V is implemented as a 3D ten-
sor. In this work we deal with objects with at most three
links. However, in practice we use five channel tensor to
relax the assumption that we can deal with only three parts.
A priority queue maintains order of the most recently allo-
cated and modified channels. This allows us to turn V into
a single segmentation mask M, by layering channels in an
occlusion aware order.

C. Reward
Full Model with Touch. If no flow is observed in the scene,
it implies the push is not proper, while not necessarily im-
plying anything about the hold action. Hence, the push re-
ward is 0 and no hold reward is back-propagated.

If flow exists, it implies the push is on the object; how-
ever, there is no guarantee of helpful motion. To better iden-
tify informative motion, we use touch feedback. (1) When
hold and push are both on the object, the hold gripper will

2wood-database.com

Figure 10. Categories. Sample of instances from train and test categories (synthetic and real world). Note during test time, unseen instances
of train categories are also evaluated.

Figure 11. Reward Shaping. White represents no backprop, dark
red a target 1, and dark blue target 0.

feel sheer force (thresholded at 0 to give binary signal), in-
dicating the need to hold harder to keep a point fixed. In this
case, (1a) we provide reward 1 to both hold and push pixels
if a new part is discovered, and (1b) 0.5 if an existing part
is moved. (2) If the hold gripper feels no force and there
is motion, it is clear the push action created motion without
anything being pinned. The hold reward is 0 and no push
reward is back-propagated. (3) If the agent pushes a previ-
ously discovered part along with another undiscovered part,
motions are entangled. Here, we penalize hold with reward
0 and do not update push network, as pushing is conditioned
on the hold.

When supervising push affordances, we also enforce re-
ward 0 for the hold pixel, which should teach the agent not
to push where it holds. We provide example (shaped) tar-
gets in Fig. 11 for illustrative cases (also showing analo-
gous ablation targets). The ablated versions are not able to
discriminate the optimality of actions to the same degree as
the full method. This ultimately affects downstream perfor-
mance.

Optical Flow Part Memory Push Reward

x - 0
X New part 1
X Existing part .5
X Entangled part 0

Table 4. Act-NoHold Reward. Reward cases for holding are
removed.

Optical Flow Touch Sensor Hold Reward Push Reward

x 1/0 N/A 0
X 1 1 1
X 0 0 N/A

Table 5. Act-NoPart. Reward cases for part-awareness are re-
moved.

Optical Flow Part Memory Hold Reward Push Reward

x - N/A 0
X New part 1 1
X Existing part .5 .5
X Entangled part 0 N/A

Table 6. Ours-NoTouch. Touch sensor is removed.

Other Models. We show reward for [Act-NoHold], [Act-
NoPart], and [Ours-NoTouch] in Tabs. 4, 5, and 6 respec-
tively.

D. Architecture
Interaction Network. We use a ResNet18 [16] backbone.
The conv1 layer is modified to change the number of input
channels from three to nine. No pretrained weights are used.
The nine channels are justified as follows. The first three
channels are used for an RGB image. The next five channels
are used for the part memory V . The final channel is a hold
channel, where an encoding of the hold location is passed
when extracting the push map. When computing the hold
map, this channel is filled with placeholder zeros.

We have two decoder heads branching off of the shared
encoder, one for holding and the second for pushing. These
heads are wired using residual connections similar to the

U-Net architecture [39]. We now describe a single upsam-
pling block. Features are bilinearly upsampled by a factor
of 2. A single conv layer is applied to reduce the number
of channels by a factor of two. The result is concatenated
with intermediate features of the same resolution from the
backbone pass. The resulting volume is passed through two
residual blocks, following the pytorch ResNet implementa-
tion. Each upsampling head is composed of four upsam-
pling blocks. The output of these heads is a 1-channel map
of logits used to predict reward for each input pixel. The
first head is used to predict hold rewards and the second to
predict push rewards, as discussed in Sec. 3.2.

For pushing, we want to simplify learning so the net-
work only has to reason about pushing in a single direction
(in our case right). To accomplish this we take eight ro-
tations of our input volume, every 45�. To avoid data loss
from rotations, we edge pad images (replicating edge values
outward), before rotation and take a 128⇥ 128 center crop.
128 is sufficient as it preserve the diagonal of the original
90⇥ 90 image.

For the full forward pass, we first extract features from
the image and part memory. We then use the hold decoder
to predict a hold map and sample to get the hold location.
The location is encoded as a gaussian. The encoded hold
replaces the channel of zeros in the input volume. Features
are again extracted by the backbone from eight rotations of
the input. The push decoder is used to get the push maps,
where we can then choose the push direction and sample a
location.
Part Network. We use a ResNet18 backbone modified
to take eight channel inputs. The channels are filled with
RGB images at timestep t and t+ 1. The last two channels
are populated with gaussian encodings for the hold and the
push. Again, no pretrained weights are used.

The decoder heads are architecturally the same as in
the interaction network. They produce logit predictions for
each pixel in the motion mask.

E. Training
Policy Rollouts for Data Collection. During each itera-
tion of training, we rollout seven timesteps for each of the
88 train object instances from the scissors, knife, USB, and
safe Part-Net Mobility categories. The data and the corre-
sponding reward is saved in a buffer. Our buffer holds the
last � iterations of data, whose distribution changes slowly
as the model interactions improve. We empirically find
� = 10 is a suitable rolling window to give good training
set performance.

In total, the rollouts produce 73,920 interactions, from
different stages in training. This corresponds to 73,920
frame pairs, actions, and ground truth flow transitions (con-
sistent forwards and backwards). Flow is thresholded at
zero to produce the motion mask ground truth necessary for

supervising the part network.
Augmentations. We apply color jitter using pytorch APIs:
brightness=0.3, contrast=0.4, saturation=0.3, hue=0.2. Ad-
ditionally we randomly set images to grayscale with proba-
bility 0.2. After applying these augmentations, we normal-
ize image RGB values using standard ImageNet mean and
standard deviation. For the part network, we sample dif-
ferent augmentations for images at timesteps t and t + 1.
For the part memory, we randomly swap channels to en-
courages invariance to the channel order. 20% of the time
we fuse all the memory channels into one and modify the
reward accordingly. This gives the model more context for
splitting parts that are allocated to the same channel. For
more details please refer to the code.
Training Details. The interaction and part networks are
trained using SGD with momentum 0.9, learning rate
1⇥ 10�3, weight decay 5⇥ 10�4, cosine-annealing sched-
ule with t-max=120, batch size 64, for 120 epochs. Hold
map, push map, and part predictions are all supervised with
binary cross entropy with logit loss. Each network trains
on a single GeForce RTX 2080 11 GB card in less than 12
hours. For CPU rendering in the parallel rollouts, we make
use of 48 Intel Xeon Gold 6226 (2.70GHz) cores.

F. Real World Details and Discussion
Pipeline details. To conduct interaction experiments in the
real world we follow the following procedure.

• Take a picture of the object using an iPhone (setup shown
in Fig. 12).

• Send picture to a laptop.

• Resize image to 90⇥ 90.

• Run AtP Interaction Network inference and visualize the
selected hold location and push location (displayed in Fig.
13).

• Have human execute the action.

• Snap another picture and send to the computer.

• Run AtP Part Network inference to recover the part mask
for this timestep.

• Repeat until last timestep at which point stop.

Discussion. When designing the real world interaction ex-
periments, we abstract away low-level manipulation details
to focus on validating our core algorithmic contributions
(i.e., learning the part and interaction networks). Humans
conduct the interactions predicted by the network. We ac-
knowledge that having a human in the loop could introduce
implicit biases for the interactions. Hence, we see immense
value in robot experiments, which we leave to future work.

Figure 12. Real World Setup. A simple configuration for taking
picture of the object to send to a laptop running our model.

Figure 13. Instructions. Our model indicates the action for a hu-
man operator to execute. The magenta dot indicates the location
to hold. The red line indicates the start location and direction of
the push. GUI is preserved to give context for what one would see
when conducting real world experiments.

G. Additional Results
Due to space limitations, we only presented interaction

step and action results for pliers and multilink categories.
Furthermore, we only showed real world results on eye-
glasses. Here we provide additional qualitative and quan-
titative results.
Failure Analysis. See Fig. 14, where comments on the
failures are provided in the caption.
Real World Results. We show results on four additional
unseen categories: keys (two link, rigid), keys (three link,
rigid), tea bag (two link, deformable), and earbuds (three
link, deformable) in Fig. 15. Surprisingly our model works
on these instances, even in the presence of deformable parts,
which are not seen during training.
IoU and Interaction Steps. We present simulation bench-
mark results for the remaining object categories in Fig. 16.
Our method approaches the upper bounds.

Figure 14. Failure Modes. (a) On three link objects our model
sometimes struggles to split parts that have been grouped together
in the part memory. We conjecture that this is due to the fact that
we train on only two link objects. Because there are not many
instances of having to split masks, the network might already think
it has discovered all the parts. (b) We call attention to the erroneous
(over) segmentation of the moved part. We notice that this is a
common failure mode of our part network. (c) This is another
case of erroneous segmentation, this time in a real world example.
Notice that the camera gain is different between the two frames.
Because segmentation is poor, subsequent action selection (i.e.,
the push in the top right) can suffer.

Effective and Optimal Steps. We notice our [Ours-Touch]
and [Act-NoPart] perform efficient actions at roughly the
same rate. However, [Ours-Touch] is able to find may more
optimal steps. See Fig. 17.

Figure 15. Real World Results. More results on real world objects.

Figure 16. IoU w.r.t. Interaction Steps. Results for the remaining simulation categories not shown in the paper due to space restrictions.

Figure 17. Effective and Optimal Steps. Results for the remaining seven simulation categories not shown in the paper due to space
restrictions.

