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1. Introduction
In this document, we provide additional details and exper-

imental results to help further understand and reproduce our
proposed method, i.e. Warp-Refine Propagation. The sup-
plementary material is divided into the following sections:

• Section 2 - Additional experimental studies: We ex-
plore different aspects of training with propagated la-
bels, such as training with different architectures, and
training in data scarce setting.

• Section 3 - Additional details: We provide details for
our training setup, as well as details of ApolloScape
dataset [10] usage.

• Section 4 - Qualitative results: We provide qualitative
examples visualizing the results of different aspects of
our method.

2. Additional experimental studies
2.1. Propagation for different architectures

We evaluate the benefit of the propagated labels on dif-
ferent segmentation models. This result is summarized in
Table 1. We see that the propagated labels are significantly
beneficial for smaller architectures, which have lower per-
formance. However, in the case of motion-only propagated
labels, we see that the performance is unaffected or some-
times deteriorated. Note that these results do not use the
20000 additional coarse labels, nor Mapillary Vistas [5] pre-
training.

2.2. Motion estimation model ablation

A simple way to use geometric cues is to simply warp the
labels between consecutive frames based on the Optical flow.
We tried different optical flow methods including RAFT [9]
for warping, but found them to be unsuitable. Apart from
drifting errors, directly warping with optical flow also causes
content duplication on de-occluded regions [14]. Therefore,
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for warping labels between consecutive frames, we found
video prediction to work the best for us.

2.3. Ablative analysis with motion-only labels

As indicated in the main paper, we do not train using
the Relaxed Label Loss (RLL) proposed by Zhu et al. [16],
and also use a fixed epoch-size. In this section, we provide
additional ablative experiments, validating our choices. Our
results are summarized in Table 2, along with the numbers
reported by Zhu et al. [16] under similar training conditions.
Note that we add the motion-only propagated labels at time
step t±3 as represented by Dm

3 . We perform the experiments
under different training settings, namely considering the
usage of coarse-labels and Mapillary Vistas pre-training. We
report the mean and the standard deviation by conducting
three runs with different random number generator seeds
for each result. We note a significant improvement between
our baseline when training with the Cityscapes coarse-labels
and with Mapillary Vistas pre-training (80.94 mIoU) and the
baseline reported in [16] (79.46 mIoU) which we attribute
to a longer training schedule of our baseline and a modified
learning rate schedule:

1. Longer training of the baseline: When training with
propagated labels, our dataset size for B + Dm

3 is in-
creased. This leads to more training iterations for
B+Dm

3 with respect to the baseline model (B is trained
for only one-third the iterations of B + Dm

3 ). We there-
fore modify the training such that B is trained for the
same number of iterations as B + Dm

3 .

2. Higher learning rate for the baseline: We increase the
learning rate by a factor of 8 for the baseline B (we
observed that the scale of cross-entropy loss is much
smaller than the scale of Relaxed Label Loss).

With the updated baseline, we find RLL as well as training
with motion-only labels to be ineffective. Further, to avoid
the pitfall of under-training the baseline, we fix the epoch-
size for all the models we compare. This ensure that the



Table 1: Training with different labelling policies on Cityscapes [3] val-split: We evaluate the benefit from warp-refine propagation across
different segmentation models. Due to the lack of semantic complexity in the dataset (only 19 classes), and the high performance (mIoU
= 83.35) of the semantic labelling network, we find the semantic-only labels to give significant benefits as well. (Note that for motion-only
we utilize only time-frames ±[2] as recommended by the authors Zhu et al. [16]). We report the average of three independent runs with
different random seeds. Note that we do not use any additional data (coarse labels and Mapillary Vistas [5] pretraining) for this ablative
analysis.

Model Backbone Baseline motion-only semantic-only warp-refine

DeepLab V3 [2] ResNeXt-50 [12] 79.26 79.01 80.45 80.68
OCR Net [13] ResNeXt-50 [12] 79.55 79.60 80.89 80.80
MSA-HRNet-OCR [8] HRNet-W48 [7] 83.35 83.00 83.91 84.07

Table 2: Results of training a segmentation model with labels generated by video propagation [16] (Dm
3 ) and relaxed label loss (RLL), on

the Cityscapes validation split. These experiments are conducted under different training settings (as shwon by the top two rows) . We also
compare the mean IoU to those reported in previous work [16]. We conduct three runs with different random seeds.

Coarse Labels 7 3 3 Training
Map. Pre-train 7 7 3 iterations

avg. mIoU std. avg. mIoU std. avg. mIoU std. #
[16] baseline B - - - - 79.46 - 175 × 2975
[16] B + RLL - - - - 80.85 - 175 × 2925
[16] B + RLL + Dm

3 - - - - 81.35 - 175 × 8925
Baseline B 77.66 0.27 79.15 0.23 80.94 0.10 175 × 8925
B+ RLL 77.50 0.12 - - 80.76 0.18 175 × 8925
B + RLL + Dm

3 77.41 0.22 78.69 0.20 80.8 0.11 175 × 8925

improvement by using additional labels is not conflated with
improvement by longer training.

3. Additional details
3.1. Training details

We use an SGD optimizer and employ a polynomial learn-
ing rate policy, where the initial learning rate is multiplied by
(1− epoch

max epoch )power. The learning rate is varied for different
datasets: for KITTI [1] we utilize a learning rate of 0.0005,
for Cityscapes we utilize 0.01 and for NYU-V2 [4] we uti-
lize 0.001. Momentum and weight decay are set to 0.9 and
0.0001 respectively. We use synchronized batch normaliza-
tion (batch statistics synchronized across all GPUs) with the
batch distributed over 8 V100 GPUs. For data augmentation,
we randomly scale the input images (from 0.5 to 2.0), and
apply horizontal flipping, Gaussian blur and color jittering
during training. Further, we utilize uniform sampling [16]
across semantic classes with 50% of each epoch.

We introduce two changes from the training configuration
outlined by Zhu et al. [16]:

• As our approach generates additional training data, the
epoch size varies greatly depending on training settings.
This can lead to a situation where the observed improve-
ment in performance can be due to longer training rather
than generated data (As shown in Section 2.3). To avoid
such mis-attribution of the reason for improvement, we

ensure that the training regime for all compared experi-
ments is equivalent. To achieve that, we define an epoch
to have a fixed size (roughly 3× the size of the normal
dataset). With this definition, we train for 175 epochs.

• We adjust our data sampling such that in each epoch,
30% samples are drawn from the manually annotated
dataset, and 70% data is drawn from the generated
dataset (through label propagation). Hence, the number
of pseudo-labels considered per epoch remains con-
sistent independent of the amount of generated labels
(In the presence of Coarse labelled data, we reduce
sampling from the generated dataset to 30%).

For models evaluated on the test set, we use the same
training validation split used by Zhu et al. [16] (cv2 split).
The cities Mönchengladbach, Strasbourg and Stuttgart are
used as validation set while all the others are used as training
data.

3.2. ApolloScape partitioning

The ApolloScape dataset [10] contains pixel-level anno-
tations for sequentially recorded images, divided as 40960
training and 8327 validation images. These images are fur-
ther broken into the subsets based on the road on which they
were recorded, and the Record-ID. Each Record-ID consists
of variable length sequentially annotated frames. We break
these sequentially annotated frames into partitions each con-



sisting of 21 consecutive frame. The images which are not
a part of any such 21-frame partition (for example when a
Record-ID contains less than 21 frames) are discarded.

Now, from each partition, we utilize the central frame as
a training data point (i.e. with manual annotation) and all the
other frames are treated as frames where labels have to be
generated via propagation. This allows us to create a dataset
with ground-truth labels containing 2005 frames, and addi-
tional 40100 sequential images (we only use the provided
ground truth for these images for evaluation purposes).

Note that to ensure that training and validation data do
not have any overlap (which could happen if any partition
of 21 frames contains validation samples), we combine the
training and validation subset, and re-divide it at a Record-
ID level (randomly). This ensures that none of our train-
sequences have any overlap with the validation data. Due to
this our training and validation split are different from the
one provided with the dataset. To encourage and facilitate
comparisons with our work, we will release our training and
validation splits to the community.

3.3. Denoising module

Our denoising module Ωλ is inspired from semantic-to-
real models [11, 6]. We show our architecture in Figure 2.
Our network takes the warp-inpainted labels Lwt , along with
auxiliary inputs: the warped image Imt , and the image at
time t + 1 It+1 to generate refined labels LRt+1:

LRt+1 = Ωλ(It+1, I
w
t , L

w
t ) (1)

The warped labels lwt are used as one-hot vectors per
pixel. All the inputs are concatenated along the “channel”
dimension and provided to the encoder network Nencoder.
The generated encoding is then concatenated with OCR-
features [13] of the image It+1 (extracted using the baseline
model gψ trained with only manually annotated images).
This is done to provide rich semantic cues for regions with
new objects. Finally the concatenated encoding is passed
through the decoder network Ndecoder to generate the refined
labels LRt+1. The complete pipeline is visualized in Figure 2.

Our network is trained with the same optimization setting
as detailed in Section 3.1. The RMI loss [15] is used to
compute the cycle-consistency loss L(Lt, L

R
t ).

4. Qualitative results
In Figure 1, we show examples of cyclic warped labels

l◦ (cf. Section 3.2 in the main paper) for different cycle
lengths. As shown, by using different cycle lengths we are
able to expose the denoising module Ωλ to a larger variety of
label noise created due to warp-inpaint propagation. Figure 3
compares the output of model trained with and without warp-
refine labels on KITTI [1] test-split (and nearby images
using scene-flow test-split). We observe that on training with

warp-refine labels, improves the networks performance on
confusing classes such as (i) bus-truck, (ii) truck-car, (iii)
rider-pedestrian, and (iv) fence-wall.
Finally, Figure 4 shows additional qualitative comparisons
between our propagation method and established baselines:
i) motion-only labels [16], and ii) semantic-only labels [8].
(a)-(d) show cases where our approach surpasses the other
methods significantly. We also highlight the errors we ob-
serve in our method: 1) Our labels are weak for fine edges,
2) Our labels still appear to show some warping noise (as
shown in example (f)) and 3) Our labels can sometimes
mislabel some classes (as shown in example (e)). Note
that examples in Figure 4 are generated with DeepLabv3
(ResNeXt-50) [2, 12] architecture for gψ .



Figure 1: We show examples of cyclic warped labels, generated to train the denoising network Ωλ. The network is trained to map the
samples (t→ t + p→ t) to the ground truth label (t). Using longer cycle of propagation (higher p) allows us to expose the network Ωλ to
larger amount of warping noise.

Figure 2: Architecture of the denoiser: The encoder and
decoder are based on pix2pix [11]. gψ is the baseline model
trained only with manually annotated labels. The input to
the encoder are concatenated along the channels dimension.
Similarly, the input of the decoder is the concatenated output
of the encoder, and OCR-features [13] from gψ .



Figure 3: Qualitative comparison of model trained with and without warp-refine labels. We see that training with warp-refine labels increase
performance for confusing classes: Baseline model mis-predicts (i) ’bus’ as ’truck’, (ii) ’truck’ as ’car’, (iii) ’pedestrian’ as ’rider’, and (iv)
’fence’ as ’wall’ and ’sidewalk’.



Figure 4: (a) gψ mislabels the Rider’s legs, and motion only (Zhu et al. [16]) shows heavy drifting. (b) gψ mislabels the truck, and Zhu et
al. [16] cause drifting near the pedestrian pixels. (c) gψ mislabels thin objects like poles (left side) (d) gψ mislabels part of the building. (e)
We note that when both semantic and motion cues fail, our method fails as well. (f) Our method outputs slightly warped labels when the
consecutive frames do not contain any ego-motion (note the warping of the pole in the center).
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