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1. Proof of Lemma 1

Lemma 1. In a Poincaré ball DY, the exponential map and
the scalar multiplication in the tangent space ToD? at the
origin satisfy the commutative law, that is

wR.expg(x) = expg(wx), €))
where w € R is a scalar and x € ToDZ.

Proof. We first denote

a = expj(@) = tanh (Vellzl)) e @)
and
tanh (/) tank (Velel) o
la|| = ————lz| = ———=—=.
Vel] Ve

Then, we can compute the left hand side of Eq. (1) as

1
weia = ol (w artanh<f|a|>) o

:% tanh (w . artanh(\/Etanh(\/\/slaj”))>
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wx
=tanh (ﬁ”wm”) e
Ve|lwz|]
=expg(wex).
“4)
Thus, we have

wR.expg(x) = expg(we). (5)
O
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2. Poincaré ball

In this paper, we utilize the framework of Mobius gy-
rovector space to provide operations for the Poincaré ball.
The Mobius gyrovector space provides the algebraic setting
for hyperbolic geometry just as the vector space provides
the algebraic setting for the Euclidean geometry. A rig-
orous theoretical and detailed mathematical background of
the gyrovector space can be found in [13]. Here we briefly
introduce several other commonly used operations in the
Poincaré ball.

Exponential map. The exponential map exp;, maps a vec-
tor v from the tangent space T, D¢ to the Poincaré ball D¢,
given by

exps(v) = m@c<tanh (\f z!v”) \ﬁtljlvH)’ (6)

where A\, = ﬁ is the conformal factor. The expo-
nential map exp§, in the tangent space ToD? at the origin is

defined as

expf(v) = tanh (Vellol) = @)

Logarithmic map. The logarithmic map log;, maps a vec-
tor u from the Poincaré ball D¢ to the tangent space T, D¢,
given by

—rd.u

—zoaul) e
(8)

2
logs (u) = Wartanh(ﬁ”
xr

The exponential map logg in the tangent space ToD? at the
origin is defined as

logg( )_ a‘rtanh(\[HuH)\/’HuH (9)

Mobius matrix multiplication. The matrix multiplication
of a vector € D? by a matrix M € R? *? is defined by



the Mobius matrix-vector multiplication. If Max # 0, we
have

Max

M|’
(10)

[Mz|

1
M.x = —tanh(
c

Ve

and M®.x =0,if Mx = 0.
Parallel transport. The parallel transport P;_,, (v) trans-
forms a vector v from one tangent space T, D¢ to another

tangent space Ty, DY,

artanh(v/c]z])))

P;_,,(v) =log;, (y®. exp(v)). (11)

If the tangent space T, D¢ is at the origin of the Poincaré
ball, i.e., = 0, the parallel transport Fg_,, (v) is
C (&) C )\8
Boy(v) = logy (y®Beexpp(v)) = Yoo (12)
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3. Implementation Details

Datasets. = We conducted experiments on four pop-
ular datasets, namely Mini-ImageNet [14], tiered-
ImageNet [10], CUB dataset [15], and CIFAR-FS
dataset [1]. The Mini-ImageNet dataset contains 100
classes from the ImageNet dataset, and each class has
600 images. We splited the 100 classes into 64, 16, and
20 for training, validation, and testing, respectively. The
tiered-ImageNet dataset has 779165 images from 608
classes totally, where 351, 97, and 160 classes were used
for training, validation, and testing, respectively. Images
of the Mini-ImageNet and tiered-ImageNet datasets were
resized into 84 x 84 pixels. The CUB dataset is a fine-
grained image dataset that contains 200 bird classes and
11788 images totally. Following the protocol of [8, 16], we
utilized 100, 50, and 50 classes for training, validation, and
testing, respectively. We cropped bird regions from images
with given bounding boxes before training. CIFAR-FS is a
FSL dataset derived from CIFAR-100 [3]. It contains 100
classes, where 64, 16, and 20 classes are used for training,
validation, and testing, respectively. Each class has 600
images with size of 32 x 32.

Architecture. In this paper, we used the a 4-layer convolu-
tional network or a 12-layer residual network as the back-
bone, i.e., the feature extractor fp(-) in our method. The
4-layer convolutional network (ConvNet) [6, 12, 14] and
the 12-layer residual network (ResNetl2) are commonly
used backbones for FSL. For ConvNet, its channels in the
4 convolutional layers are (64,64, 64,64). For ResNetl2,
note that, in previous works, there exists two ResNetl2
backbones. The two ResNet12 backbones both have four
residual blocks, while the numbers of convolutional chan-
nels in the four blocks are different. In some works,
such as [7, 8, 9], they used a smaller ResNet12 backbone
(ResNet12), and their numbers of convolutional channels in

the four blocks are (64, 128, 256, 512). In some works, such
as [5, 11, 16], they used a bigger ResNet12 backbone (Bi-
gResNet12), and their numbers of convolutional channels
in the four blocks are (64, 160, 320, 640). For fair and com-
prehensive comparisons with existing methods, we evalu-
ated our method in both the two ResNetl12 backbones. In
our paper, we denote the smaller ResNetl2 backbone as
ResNet12, and denote the bigger ResNet12 backbone as Bi-
gResNet12.

Training. Trianing and evaluating our model requires one
GeForce GTX 2080Ti GPU with 11GB. We first pre-trained
the ResNet12 and BigResNet12 backbones using the cross-
entropy loss on the training set, while we did not pre-train
the ConvNet backbone. For the Mini-ImageNet and tiered-
ImageNet datasets, the pre-trained ResNet12! and BigRes-
Net12? backbones were downloaded from the code web-
pages of works [2, 16]. For the CIFAR-FS dataset, we used
the Adam optimizer over 100 epoches to pre-train the Bi-
gResNet12 backbone. We set the learning rate was as 0.001
in the pre-training stage, decayed the learning rate per 50
epoches, and the dacay rate was set as 0.1. Then, we re-
moved the last FC layer and the softmax layer of the pre-
trained model, and the rest layers were used as the feature
extractor fy(-) in our method. Finally, we carried out meta-
training to train our feature extractor, class-curvature gen-
erator (CCG), and hyperbolic aggregation network (HAN)
together over 20000 episodes. We used the Adam optimizer
in the meta-training stage, where the learning rate for the
CCG and HAN was 0.001. We decayed the learning rate per
8000 episodes in the meta-training stage, and the dacay rate
was 0.1. We set the value of the weight decay as 0.0005 for
our method, except for the ConvNet backbone. The value
of the weight decay was 0 for the ConvNet backbone.

In our method, we have three hyperparameters: o in
CCG, rin CCG, and m in HAN. We set o = 128 and r = 5.
We set m = 4 and m = 20 for 1-shot and 5-shot inductive
tasks, respectively. In transductive setting, we set m = 60.

4. Additional Experimental Results
4.1. Intra-class and inter-class context information

Here we evaluated the effectiveness of the used intra-
class and inter-class context information in our hyperbolic
aggregation network (HAN). Experiments were conducted
on the Mini-ImageNet dataset using the BigResNet12 back-
bone. We show the performance of removing the intra-class
context information, removing the inter-class context infor-
mation, and removing both of them. Concretely, remov-
ing the intra-class context information means not computing
weights for samples in the in-class set X ; and use hyper-
bolic averaging of features as the preliminary prototypes,

Uhttps://github.com/Sha-Lab/FEAT
Zhttps://github.com/cyvius96/few-shot-meta-baseline



Table 1. Evaluation of the intra-class and inter-class context infor-

mation.
Setting Method 1-shot 5-shot
w/o intra inter | 59.47 4 0.20 80.41 +0.14
Inductive w/o intra 65.81 £ 0.20 81.01+0.14
w/o inter 59.47 £+ 0.20 80.87 £ 0.14
GAE (Ours) | 67.02+0.20 | 82.32+0.14
w/o intra inter | 59.94 4+ 0.21 80.67 +0.14
Transductive w/o %ntra 63.69 £ 0.20 81.04 £ 0.14
w/o inter 59.94 + 0.21 80.96 + 0.15
GAE (Ours) | 71.79+0.23 | 83.00 +£0.17

Table 2. Ablation experiments on the Mini-ImageNet dataset.

denoted as ‘w/o intra’. Removing the inter-class context in-
formation means not computing weights for or aggregating
samples in the out-of-class set Z; and using the prelimi-
nary prototypes as the final prototypes, denoted as ‘w/o in-
ter’. For 1-shot tasks, there is only 1 sample in X ;, and
the weight assigned for this sample is always equal to one.
Thus, ‘w/o inter’ of the 1-shot tasks has the same perfor-
mance with ‘w/o intra inter’. Results are shown in Table 1.

We can find that, both the intra-class and inter-class con-
text information have influence in the hyperbolic aggrega-
tion network. For example, without the intra-class con-
text information, ‘w/o intra’ achieves 81.01% and 81.04%
in the 5-shot inductive and transductive settings, respec-
tively, 1.31% and 1.96% lower than GAE. Without the inter-
class context information, ‘w/o intra’ achieves 80.87% and
80.96% in the 5-shot inductive and transductive settings, re-
spectively, 1.45% and 2.04% lower than GAE. When nei-
ther the intra-class context information nor the inter-class
context information is considered, ‘w/o intra inter’ achieves
80.41 and 80.67 in the 5-shot inductive and transductive set-
tings, 1.91% and 2.33% lower than GAE. This experimental
results show that both the intra-class and inter-class context
information play important roles in the aggregation samples
into discriminative prototypes.

4.2. More ablations

In this section, we added more experiments to show
the performance of manully setting c. Experiments are
conducted on the Mini-ImageNet dataset using the Bi-
gResNetl2 backbone. Compared with ablation study
in the manuscript that manully set ¢ as 1, 0.1, 0.01,
and 0.001, we further set the ¢ as 10, 5, 2, 0.0001,
0.00001, and 0.000001, denoted by ‘w/o CCG HAN, ¢ =
10/5/2/0.0001,/0.00001/0.000001" and ‘w/o CCG, ¢ =
10/5/2/0.0001,/0.00001/0.000001°. We conducted an ab-
lation study that learns two fully-connected layers to gener-
ate task-specific embeddings and prototypes to further show
the effectiveness of our CCG and HAN, denoted by ‘com-
pletely learned’. We conducted an ablation that replaces
hyperbolic geometry with spherical geometry and generates
positive curvatures to show the effectiveness of hyperbolic
geometry with negative curvatures, denoted by ‘spheircal’.

Setting Method 1-shot 5-shot
ProtoNet 58.34 4 0.20 78.49 +£0.14
w/o CCG HAN, ¢ = 10 56.72 £ 0.21 79.21 +£0.14
w/o CCGHAN, c =5 56.49 4+ 0.21 79.25+0.14
w/o CCG HAN, ¢ = 2 55.81 +0.21 79.17+£0.14
w/o CCGHAN, c=1 59.05 4+ 0.21 78.34 +0.22
w/o CCG HAN, ¢ = 0.1 51.38 +0.29 56.20 £ 0.34
w/o CCG HAN, ¢ = 0.01 50.92 4+ 0.22 75.66 = 0.16
w/o CCG HAN, ¢ = 0.001 58.68 + 0.21 76.94 +0.14
w/o CCG HAN, ¢ = 0.0001 58.70 £+ 0.20 77.30 £0.14
w/o CCG HAN, ¢ = 0.00001 58.79 4 0.20 79.37+0.14
w/o CCG HAN, ¢ = 0.000001 58.58 £+ 0.21 79.29 +£0.14
Inductive w/o HAN, single ¢ 58.97 + 0.20 80.19 +0.14
w/o HAN, class-level ¢ 59.47 + 0.20 80.41 +0.14
w/o CCG, ¢ = 10 61.31 4+ 0.20 75.13+£0.18
wlo CCG, c =5 61.20 £ 0.20 74.474+0.18
w/o CCG, c =2 60.51 £ 0.20 73.80 +0.19
w/o CCG,c =1 62.60 £ 0.20 79.25 4+ 0.14
w/o CCG, c=0.1 57.65 + 0.21 59.52 4+ 0.30
w/o CCG, ¢ = 0.01 64.17 £ 0.21 76.49 £+ 0.16
w/o CCG, ¢ = 0.001 59.12 4+ 0.21 77.87+0.16
w/o CCG, ¢ = 0.0001 63.12 +0.21 80.33 £0.14
w/o CCG, ¢ = 0.00001 62.78 + 0.20 79.65 + 0.15
w/o CCG, ¢ = 0.000001 62.40 £ 0.20 80.57 £ 0.14
completely learned 59.97 4+ 0.25 77.774+0.20
spheircal 63.56 & 0.21 81.00 +0.15
GAE (Ours) 67.02+0.20 | 82.321+0.14
w/o CCG HAN, ¢ = 10 56.49 £ 0.21 79.18 £0.14
w/o CCG HAN, c =5 57.09 +0.21 79.19 +£0.14
w/o CCG HAN, ¢ = 2 57.14 +£0.21 79.21+0.14
w/o CCGHAN, c =1 59.14 £+ 0.22 79.82 +0.21
w/o CCG HAN, ¢ = 0.1 51.04 £+ 0.29 56.82 4 0.33
w/o CCG HAN, ¢ = 0.01 51.06 4+ 0.22 75.73 £0.16
w/o CCG HAN, ¢ = 0.001 58.74 +£0.21 78.18 £0.14
w/o CCG HAN, ¢ = 0.0001 58.92 4+ 0.20 78.15+0.14
w/o CCG HAN, ¢ = 0.00001 58.53 4+ 0.21 80.49 +0.14
w/o CCG HAN, ¢ = 0.000001 57.88 +0.21 80.57 £ 0.14
w/o HAN, single ¢ 59.16 4 0.20 80.29 +0.14
Transductive w/o HAN, class-level ¢ 59.94 + 0.21 80.67 = 0.14
w/o CCG, ¢ = 10 62.87 £+ 0.20 79.65 +0.18
w/o CCG,c =5 62.92 £ 0.20 79.73 +£0.18
w/o CCG, ¢ =2 62.86 £ 0.20 79.49 +£0.19
w/o CCG,c =1 62.80 £+ 0.20 81.024+0.14
w/o CCG, ¢ =0.1 51.69 + 0.24 65.61 + 0.25
w/lo CCG, ¢ = 0.01 62.50 £+ 0.21 77.59 £ 0.16
w/o CCG, ¢ = 0.001 69.66 £ 0.22 80.91 +0.14
w/o CCG, ¢ = 0.0001 69.50 £ 0.22 80.72 £ 0.14
w/o CCG, ¢ = 0.00001 62.71 4+ 0.20 79.61 +0.15
w/o CCG, ¢ = 0.000001 62.81 £+ 0.20 79.86 + 0.15
model capacity 68.25 + 0.21 81.08 0.16
GAE (Ours) 71.79+0.23 | 83.00+0.17

In the ‘model capacity’ experiment, we set the backbone
as (64, 150, 320,610) to keep the number of our whole pa-
rameters consistent with the backbone. We used the ‘model
capacity’ experiment to show whether our improvement is
from the model capacity. Results are shown in Table 2.
More experiments further demonstrate that producing ap-
propriate curvatures leads to better performance than man-
ually setting a fixed and unitary curvature for various FSL
tasks.

4.3. Efficiency

We provided the time and memory cost of our method on
both the 1-shot 5-way and 5-shot 5-way tasks. Experiments
were conducted on the mini-ImageNet dataset, where the
BigResNet12 backbone was used. We used official codes
of compared methods. The performance was measured us-
ing an Inter(R) Core(TM) 17-7820X 3.6GHz CPU, GeForce
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Figure 1. Visualization of data distributions and class prototypes on 24 FSL tasks of the min-ImangeNet dataset. Triangles represent
support samples, dots denote query samples, and stars represent generated class prototypes.

Table 3. Training and test time (seconds) on the mini-ImageNet dataset.

Method 1-shot training time | 1-shot test time | 5-shot training time | 5-shot test time
FEAT [16] 3240 787 4166 955
DSN [11] 5769 943 7561 1247
Ours 4445 610 5507 775




Table 4. Memory cost (MB) on the mini-ImageNet dataset.

Method 1-shot Memory cost | 5-shot Memory cost
FEAT [16] 4749 5527
DSN [11] 8267 9681
Ours 4785 5633

GTX 2080Ti GPU and 32GB RAM. The training and test
time of all methods was measured over the same number of
episodes. Results are shown in Table 3. Results show that,
our method requires the least test time. In other words, our
method takes the least time to adapt the embedding space to
anew task. We also compare the memory consumption with
state-of-the-art methods, as shown in Table 4. We can find
that, our method requires similar memory consumption with
FEAT and less memory consumption than DSN. In fact, our
CCG and HAN are not large. Here we provide our largest
parameter number (using BigResNet12). CCG, HAN, and
the backbone have 8.20 x 10°, 7567, and 1.24 x 10" pa-
rameters, respectively. Compared with backbone, our CCG
and HAN are indeed small. Considering the accuracy im-
provement, we think the memory and computation costs are
acceptable.

4.4. Prototypes

In this section, we visualized more generated class pro-
totypes, as shown in Figure 1. Experiments were conducted
on the 1-shot 5-way tasks of the Mini-ImageNet dataset,
where the ConvNet backbone was used. Concretely, we
computed all pairs of distances between embeddings, and
sent the distances to the MDS dimensionality reduction
method [4] to reduce embeddings to 2-D vectors. Experi-
mental results show that our method can generate discrimi-
native prototypes even outlier support instances are given.
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