
A. Appendix
A.1. Taylor Polynomial

We illustrate the bi-variate 4th order Taylor series,
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θ7(ŷi − θ0)(yi − θ1)

2 +
1

2
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to compare with the ARL format presented in Equation 5. The terms only containing the ground truth, y, are kept in Equation 6
and these terms will not effect the training as no gradients are backpropagated into the network through y.

A.2. Architecture of Neural networks

The architectures we used to conduct architecture randomisation and dataset randomisation are given in Table 6. In
architecture randomisation, 2-Layer MLP, 3-Layer MLP and 4-layer CNN are applied. For the dataset randomisation, only
4-Layer CNN are utilised. JoCoR-Net is only used in the dataset-specific loss learning task.

Table 6. The architectures used in the experiments

2-Layer MLP 3-Layer MLP 4-Layer CNN JoCoR-Net

28× 28 Gray Image 28× 28 Gray Image 32× 32 RGB Image 32× 32 RGB Image

FC 28× 28 −→ 256, ReLU

FC 28× 28 −→ 256, ReLU
5× 5, 32, ReLU

3× 3, 64 BN, ReLU
3× 3, 64 BN, ReLU
2× 2 Max-pool

FC256 −→ 256, ReLU
5× 5, 64, ReLU

3× 3, 128 BN, ReLU
3× 3, 128 BN, ReLU

2× 2 Max-pool

FC 1024 −→ 1024, ReLU
3× 3, 196 BN, ReLU
3× 3, 196 BN, ReLU

8× 8 Avg-pool

FC 256 −→ 10 FC 256 −→ 10 FC 1024 −→ 10 FC 196 −→ 100

A.3. Further Implementation Details

We make use of normalisation to ensure the loss values are bounded in a well behaved range for CMA-ES loss function
search,

f̂ = η
f − fmin

fmax − fmin
, (7)

where fmin and fmax denotes the minimum and maximum and η is a hyperparameter deciding the dynamic range of the loss
function. Both fmin and fmax are easily approximated by sampling random points satisfying {(ŷ,y)|ŷi ≥ 0,

∑
i ŷi = 1;yi ∈

{0, 1},
∑

i y = 1}, which defines the domain of the loss function. Note that this can help improve CMA-ES optimisation
stability during meta-training.

A.4. Sensitivity to early-stopping

As discussed before, using noisy validation for hyper-parameter tuning and early stopping generates different models
when comparing with the models trained with long epochs, with models selected by early stopping tending to have better
performance. The performance gap between a model picked by early stopping and that trained to convergence reflects the
robustness of a loss function. A model that requires very careful model selection/early stopping can be considered non-robust
in this sense, while a robust model performs similarly for different stopping iterations. To evaluate this, we compute the mean
and variance of the early-stopping vs convergence type of gap over all the tasks introduced in Tables 1-2. From the results in
Table 7, we can see that our ARL exhibits the smallest gap, confirming that it does not require careful tuning compared to
alternatives.



Table 7. Accuracy difference (%) between training-to-the-end and early-stopping. Higher numbers indicate models that require careful
validation-set driven early-stopping that may not be feasible in noisy label setting. Lower numbers indicate models that are more robust
insofar as not requiring carefully chosen stopping times.

Loss type CE GCE SCE NCE+MAE NFL+MAE ARL (AR) ARL (DR)

Asym04 18.01±10.95 15.82±10.55 10.85±8.76 10.83±6.29 11.87±8.26 1.84±1.25 6.15±4.76
Sym08 26.30±16.38 17.67±15.60 14.12±10.33 10.87±9.90 7.85±8.85 4.97±3.45 3.90±4.31

A.5. Learning curve

We illustrate the convergence of our loss learning framework by its learning curve in Figure 6. The curve illustrated
corresponds to the dataset randomisation condition where MNIST, KMNIST and CIFAR-10 are used. For simplicity, we apply
a shallow network that has two fully connected layers with m-256-256-C units, where m is the dimensionality of the input
and C is the number of classes. The meta-train line represents the average accuracy of the trained networks across all the noisy
training datasets with 40% asymmetric noise. The meta-validation curve is the average accuracy of the networks on the clean
held-out validation splits of these datasets. The x-axis corresponds to outer-loop iterations of re-training the MLP under the
evolving loss function. Both (noisy) training and (clean) validation accuracies are evaluated at the end of each outer-loop
iteration after the MLP has been completely trained under the current loss function. From the curve we observe that the loss
function continues to improve the noisy-label learning performance of the MLP throughout meta-training, until it eventually
plateaus.
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Figure 6. The convergence process of loss function meta-learning in terms of (noisy data) meta-training accuracy and (clean data) meta-
validation accuracy.

A.6. Details of Learned Losses

For reproducibility, we give the complete parameters of the learned ARL from each training condition in Table 8 and their
corresponding plots in Figure 7. They all have similar shape to the example shown in Fig 2.
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Figure 7. The plot of the learned loss function: From left to right: ARL(AR-A40), ARL(DR-D40), ARL(AR-S80), ARL(DR-S80).

A.7. Experimental datasets



Table 8. The parameters of the learned ARL

Loss type parameters
θ0, θ1, ..., θ11

ARL(AR-A40) 0.4397, 0.9187, -0.4554, 6.0881, -0.5869, 1.6765, -2.8526, 0.5748, -4.2756, 1.3126, -0.3326, 1.7649
ARL(DR-A40) 1.3754, 25.9954, 8.7507, 3.6501, 9.1560, -2.8144, -5.4006, -7.9342, -8.3143, 6.5751, 3.6237, -2.3279
ARL(AR-S80) 0.7043, -0.4858, -0.0541, -1.8132, 2.2370, 2.4009, 1.4415, 6.4514, -2.7152, -2.6928, -3.2049, -0.5511
ARL(DR-S80) 2.7187, 25.0616, -23.2701, 17.0804, -21.4348, 44.8821, -13.6956, 27.6005, -17.3943, 43.7386, 7.2981, -17.5286

Table 9. The datasets used in the experiments.
number of training number of test number of class image size

MNIST 60,000 10,000 10 28× 28
KMNIST 60,000 10,000 10 28× 28

USPS 7,291 2,007 10 16× 16
FashionMNIST 60,000 10,000 10 28× 28

CIFAR-10 50,000 10,000 10 32× 32
CIFAR-100 50,000 10,000 100 32× 32
Clothing1M 1,000,000 10,000 14 224× 224


