
FastNeRF: High-Fidelity Neural Rendering at 200FPS - Supplementary Material

Stephan J. Garbin* Marek Kowalski* Matthew Johnson Jamie Shotton
Julien Valentin

1. Overview

We use the supplementary material to provide more de-
tailed results and algorithms. We urge the reader to see our
video, in which we show results for all 16 scenes we tested
on along with providing an intuition for our method. On a
practical note, we also provide guidance on getting smooth
results for anyone adapting our method to their own work.

Please note that parameters chosen throughout this work
for the rendering algorithm favour the highest possible qual-
ity. It is possible to significantly increase rendering speeds
by sacrificing a small amount of visual quality for real-
world applications.

1.1. ‘Motion’ Smoothness

We notice that our method can exhibit more flicker-
ing artefacts on the NeRF 360 Synthetic dataset than the
baseline when trained using the same settings as NeRF,
which we find only noticeable in motion. These direction-
dependent artefacts are due to overfitting of the view-
dependent MLP and can be successfully mitigated in one
of two ways (which can also be combined). Sticking with
identical parameters as NeRF, we can simply choose a res-
olution between 163 and 643 for the direction-dependent
cache, which uses interpolation at lookup by default. Al-
ternatively, we can adjust the Fourier feature encoding of
the view directions at training time. In [4], the Fourier en-
coding maps from R to R2L, where L is 10 for position, and
4 for direction. For FastNeRF, setting L = 1 actually works
best for the NeRF 360 Synthetic dataset. Please note that
we do not use these approaches when computing metrics in
the text to ensure the same settings are used for all datasets,
but that using them would slightly improve the results on
synthetic data.

Effect of modified Fourier feature encoding on met-
rics: Using an 8 layer 256 hidden unit MLP for position,
and a 4 layer 128 MLP for direction, we can obtain an av-
erage PSNR of 29.748dB for L = 1, 29.646dB for L = 2,
29.449dB for L = 3 on synthetic data, with smoothness of
results being reflected in these numbers.

Effect of small direction cache on metrics: Using a

*Denotes equal contribution

smaller direction cache has a negligible impact on met-
rics, occasionally actually improving them. This shows
that the direction-dependent effects required by FastNeRF
are low in frequency. For the scenes where we found
we needed to use a smaller cache for moving images, the
PSNR differences caused by using a smaller directional
cache are: Materials (323) (28.885dB →28.874dB); Drums
(163) (23.745dB →23.836dB); Lego (323) (32.275dB
→32.155dB); Mic (323) (31.765dB →31.667dB); Hot-
dog (323) (34.722dB →34.644dB); Ficus (323) (27.792dB
→28.193dB).

1.2. Training & Detailed Results

For training, we use the same frequency encoding, noise
perturbation and learning rate decay (starting at 5e − 4) as
[4]. For the NeRF 360 Synthetic dataset, we use 64 and
128 samples for the coarse and fine networks, respectively.
This becomes 64 and 64 for the LLFF scenes. Note that the
coarse networks are discarded and not used in the caching
stage - the cached density (or rather, the mesh derived from
it) serves as the importance distribution during rendering.
We sample 1000 random rays per gradient descent step, and
use Adam [2] as our optimizer of choice, with β1 = 0.9,
β2 = 0.999.

In the paper, we compute test metrics on a random sub-
set of 20 images per scene from the test sets of the NeRF
360 Synthetic dataset, and all available test images for the
LLFF data. We use the evaluation set only to select the best
iteration, which is 300K for all scenes, indicating identi-
cal convergence trends as NeRF [4]. For completeness, we
show results for all scenes using the full number of test im-
ages in Table 1. We note that the results and trends are in
agreement with the sub-sampled test set. Please see Fig-
ure 4 and beyond for a qualitative comparison in addition
to the video. We include further ablations on the number of
components in Table 2 and Table 3.

1.3. Meshing & Rendering

One of the key advantages of working with sparse oc-
trees to store the caches required by our method is that they
can serve as a basis for accelerating the rendering process.
Using raytracing, we can quickly terminate rays that miss



Table 1. As in the main text, we compare NeRF to our method when not cached to a grid, and when cached at a high resolution in terms
of PSNR, SSIM and LPIPS, and also provide the average speed in ms of our method when cached. The first 8 scenes comprise the dataset
of [4] at 8002 pixels, the last 8 scenes the LLFF dataset [3] at 504 × 378 pixels. We use 8 components and a 10243 cache for the NeRF
Synthetic 360 scenes (except for the ship scene where we use 7683), and 6 components at 7683 for LLFF.

Scene NeRF Ours - No Cache Ours - Cache Speed

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Drums 24.58dB 0.92 0.08 23.868dB 0.91 0.084 23.745dB 0.913 0.083 4.5ms

Ship 27.21dB 0.83 0.17 27.241dB 0.839 0.155 27.685dB 0.805 0.192 4.9ms

Mic 30.85dB 0.97 0.03 30.274dB 0.973 0.023 31.765dB 0.977 0.022 2.6ms

Ficus 28.86dB 0.96 0.03 27.037dB 0.948 0.034 27.792dB 0.954 0.031 3.7ms

Chair 31.16dB 0.96 0.04 30.967dB 0.96 0.032 32.322dB 0.966 0.032 2.6ms

Lego 30.41dB 0.95 0.03 31.076dB 0.955 0.023 32.275dB 0.964 0.022 5.5ms

Hotdog 34.7dB 0.97 0.03 34.21dB 0.97 0.029 34.722dB 0.973 0.031 4.9ms

Materials 28.93dB 0.94 0.03 28.567dB 0.943 0.034 28.885dB 0.947 0.034 3.9ms

Fern* 26.84dB 0.86 0.09 26.325dB 0.853 0.105 25.006dB 0.822 0.131 1.7ms

Flower* 28.32dB 0.89 0.06 28.916dB 0.912 0.043 27.012dB 0.878 0.059 1.3ms

Fortress* 32.7dB 0.93 0.03 32.946dB 0.937 0.021 31.256dB 0.913 0.043 0.8ms

Horns* 28.78dB 0.9 0.07 29.748dB 0.925 0.044 26.847dB 0.889 0.07 1.2ms

Leaves* 22.43dB 0.82 0.1 22.53dB 0.833 0.095 21.3dB 0.787 0.122 1.5ms

Orchids* 21.36dB 0.75 0.12 21.204dB 0.747 0.126 20.356dB 0.712 0.137 1.6ms

Room* 33.59dB 0.96 0.04 33.702dB 0.961 0.034 30.301dB 0.942 0.057 1.6ms

TRex* 27.74dB 0.92 0.05 28.292dB 0.933 0.04 26.204dB 0.903 0.063 1.4ms

Table 2. Influence of the number of components and grid resolution on PSNR and memory required for caching the Horns (‘Triceratops’)
scene. Note how more factors also increase grid sparsity in this case. 6 components are a reasonable amount for LLFF data.

Factors No Cache 2563 3843 5123 7683

PSNR↑ Memory PSNR↑ Memory PSNR↑ Memory PSNR↑ Memory PSNR↑ Memory
4 29.56dB - 22.94dB 0.39GB 24.64dB 0.8GB 25.62dB 1.56GB 26.52dB 4.18GB
6 29.75dB - 23.08dB 0.56GB 24.86dB 1.14GB 25.89dB 2.22GB 26.85dB 6.11GB
8 29.82dB - 23.02dB 0.72GB 24.79dB 1.45GB 25.81dB 2.81GB 26.76dB 7.83GB

the neurally rendered object(s) all together. For the rays
that hit occupied voxels, and so require integrating the vol-
ume, we can use raytracing to skip empty space efficiently,
saving a significant amount of queries. This matters be-
cause caching makes our method memory instead of com-
pute bound. Computing the inner product of the compo-
nents and weights as well as tracking transmittance for each
ray is fast on modern GPUs. Grid look-ups, which require
reading from the GPUs RAM on the other hand, are expen-
sive.

While we could use a hierarchical digital differential an-
alyzer such as [5] to determine ray grid intersections, we
opt to trace rays against a collision mesh derived from the
volume instead, for three reasons. First, this allows us to
take advantage of hardware acceleration for the BVH and

ray-triangle intersections on modern hardware. Second, we
can down/resample or deform the meshes easily using exist-
ing tools. Finally, meshes could be used to ‘fake’ shadows,
bouncelight and other effects which can be composited over
the neurally rendered content.

We derive the meshes by converting the density cache
to a sign distance function (thresholding at 0.0), optionally
downsampling it before meshing with marching cubes, and
optionally simplifying the resulting geometry using stan-
dard techniques. We show the resulting geometry for the
Lego scene in Figure 1. Note that more aggressive thresh-
olding of the volume or remeshing is easily possible and can
lead to significant performance benefits in practise as more
rays can be culled early and mesh complexity reduced.

For rendering, we follow the same method as NeRF, us-



Table 3. Influence of the number of components and grid resolution on PSNR and memory required for caching the Fortress (‘Minas
Tirith’) scene. Note how more factors also increase grid sparsity in this case. 6 components are a reasonable amount for LLFF data.

Factors No Cache 2563 3843 5123 7683

PSNR↑ Memory PSNR↑ Memory PSNR↑ Memory PSNR↑ Memory PSNR↑ Memory
4 32.81dB - 26.54dB 0.42GB 28.61dB 0.93GB 29.83dB 1.88GB 30.99dB 5.43GB
6 32.95dB - 26.63dB 0.6GB 28.75dB 1.31GB 30.01dB 2.66GB 31.26dB 7.83GB
8 33.03dB - 26.66dB 0.79GB 28.81dB 1.72GB 30.1dB 3.47GB 31.36dB 10.29GB

ing the Beer-Lambert Law [1] to model radiance extinction.
Once the contribution of new samples for a ray reaches
0.001, we terminate a ray’s rendering kernel. Note that
this can be relaxed for greater performance. Another way
to accelerate the rendering process is to visit fewer voxels
based on radiance or transmittance. For all paper experi-
ments however, we never skip occupied space, or optimise
any parameters per scene.

1.4. Deep Radiance Map Analysis

As shown in Figure 2, FastNeRF can model complex
appearance with specular reflections, although we observe
small errors when six or less components are used for the
Realistic 360 Synthetic dataset. Using more than six com-
ponents gives the model more representative power, avoid-
ing such errors. For example, point P1 shows an incorrect
specular response (despite being in shadow) when too few
components are used. We can also observe greater detail as
the number of components increases above eight for P0 and
P2, although the differences are more subtle. Please note
that the complexity of the direction-dependent MLP Fdir is
the same throughout these experiments and applying regu-
larisation to it is an orthogonal discussion (see Section 1.1).

Figure 3 shows the weighting of the deep radiance map
components over the hemisphere in section (a) for the same
scene as before. We note that this function depends only
on direction and does not vary with position, unlike the
deep radiance map components themselves (please also see
the supplementary video at 2:34 - 2:40). With four com-
ponents, the hemisphere appears divided into three base
parts and one that modulates the strong specular response
that is observed when the viewing direction is incident with
the dominant light in the scene. Adding more components
leads to greater subtlety of the learned representation, akin
to adding more lobes to a traditional material model in com-
puter graphics [10, 8].

Section (b) of Figure 3 shows that all components con-
tribute to the final colour of an example point, P2. More
specifically, we show the mean absolute contribution of
each component to the final pixel colour over the hemi-
sphere from which the training, validation and test views are
sampled. We note that these results are not cherry-picked,
but illustrative of the general behaviour we are able to ob-
serve in FastNeRF reconstructions.

1.5. Comparing FastNeRF with Pruning / Quanti-
zation

Alternative to the factorisation proposed in this work,
one could also consider pruning MLP weights or direct
quantization of MLP weights to gain performance relative
to the baseline. In [9], pruning is reported to translate
into a speedup of around 11% but is highly dependent on
the effectiveness of sparse indexing. For 16 bit quantiza-
tion, Nvidia reports a maximal 8× increase in arithmetic
throughput [6]. In contrast, our method gives speedups of
at least 2600×. Hence we do not believe that optimising the
neural network for performance would lead to comparable
gains. Moreover, we believe it is possible to optimise our
method further by removing branching behaviour in CUDA
kernels, optimising for the amount of registers, or exploiting
cache coherence in specific ways.

1.6. Cache size calculation

In this section we show the formulas we used to estimate
cache sizes MNeRF ,MFastNeRF for NeRF and FastNeRF
respectively.

MNeRF = α(sσ + srgb)k
3l2, (1)

where sσ, srgb are the sizes of the stored transparency and
RGB values in bits and α ∈ 〈0, 1〉 is the inverse volume
sparsity, where α = 1 would indicate a dense volume.
Just as in the main paper k, l correspond to the number of
bins per dimension in the position and direction dependent
caches respectively.

MFastNeRF = α
(
(D · suvw + sσ)k

3
)
+D · sβl2, (2)

where suvw, sβ are the sizes of the stored (ui, vi, wi) values
and the weights βi.

For k = l = 1024, D = 8, (r, g, b) stored as individual
bytes and all other values stored as half-precision floats the
cache size would be

MNeRF = α ·5, 629, 499, 534, 213, 120 ≈ α ·5.6PB, (3)

for NeRF and

Mfactor = α·53, 687, 091, 200+16, 777, 216 ≈ α·54GB,
(4)

for FastNeRF.



Figure 1. Collision Meshes for the Lego scene used for our raytraced rendering algorithm. From left to right, top to bottom, these are derived
from the following grid resolutions 2563, 3843, 5123, 7683, 10243. Note that we threshold the density at 0, but being less conservative
can give meshes good enough to compute shadows or bounce light. This is seen in the bottom-right image, where the identical volume is
thresholded at 10.0 instead (best viewed zoomed in).

1.7. Details on Applications

In our proof-of-concept telepresence scenario we use a
deformation field network [7] Fdeform that modifies the
input sample positions. This network is similar to the
position-dependent network used in FastNeRF, but smaller
- a 6-layer MLP with 64 units in each layer. The input is a
sample position and an expression vector. The sample po-
sition is processed with positional encoding identically to
how the FastNeRF input position is processed. The out-
put is an offset that is applied to the input sample position.
When training with Fdeform we add an L2 regularizer that
constrains Fdeform to be an identity transform if a neutral
expression is passed as input. We find that this solution sta-
bilizes training and improves results.

In addition to Fdeform, we also use a non-trainable de-
formation field Fbone that moves the samples in the head
region according to the movement of the 3D model bones
that represent the shoulders and the neck. This additional
deformation accounts for large movements of the head and
the shoulders, which reduces the load on Fdeform and im-

proves quality. The two deformation fields are composed
with the position-dependent network Fpos as follows:

{σ, (u,v,w)} = Fpos (Fdeform(Fbone(p, e), e)) , (5)

where e is the expression vector. While we could use Fbone
at test-time as well, we remove it to improve performance.

The training procedure in this scenario is identical to
that used in FastNeRF but with 64 samples in the coarse
stage and an additional 64 in the fine stage. The position-
dependent network has 384 units in each layer, while the
view-dependent network uses only 32 units and 2 layers.
The view-dependent network is very small as we believe
the scene’s illumination is simple and fairly uniform.

The main limitation of this approach in terms of speed
is the need to call Fdeform for all the input samples. In or-
der to mitigate this, at test-time we implement a grid-based
sample pruner. For each position in a grid around the face
region we compute the density σ

σ = Fpos (Fdeform(p, e)) (6)



Figure 2. Final integrated pixel colours for three points, P0, P1, P2, visualised with fixed camera position but varying directions over
the hemisphere. We observe the presence of strong specular reflections from the directional light of the scene. These specularities are
incorrectly reflected in the final colour for the occluded P1 if less than eight components are used.

for 50 randomly chosen samples of e. For each grid position
we record the minimum and maximum encountered σ in a
sparse volume. At test-time we use this volume to prune the
inputs to Fdeform where the maximum σ is 0 and where
the rays would get saturated, which we estimate using the
minimum density values from the volume. This approach
reduces the runtime of Fdeform by more than a factor of 2.

To further reduce the impact of Fdeform on the runtime
we only use 43 samples in the coarse stage and remove the
fine stage altogether at test time. To offset this low sam-
ple count we add additional samples that are linearly inter-
polated between the samples generated by the deformation
network

pdeform = Fdeform(p, e)). (7)

The additional samples can be evaluated very cheaply as
they can be looked-up in the FastNeRF cache. Note that
since the deformation network changes the positions of in-
dividual samples along the rays, the rays are no longer
straight. This means that in this scenario we cannot use
the hardware-accelerated ray tracing procedure described in
the main paper, though the pruning method described above
serves a similar role.

Even though the steps above significantly reduce the run-
time of Fdeform, we are still limited to rendering 300×300
pixel images with a reduced sample count if we want to

maintain 30FPS with the deformation network. We ob-
served that if this framerate constraint was to be disre-
garded, the approach described above is able to generate
images at significantly better quality. Thus, we believe that
a faster deformation approach remains an important goal for
future work.

References

[1] Julian Fong, Magnus Wrenninge, Christopher Kulla, and
Ralf Habel. Production volume rendering: Siggraph 2017
course. In ACM SIGGRAPH 2017 Courses, SIGGRAPH ’17,
New York, NY, USA, 2017. Association for Computing Ma-
chinery. 3

[2] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2017. 1

[3] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Trans.
Graph., 38(4), July 2019. 2, 9, 10, 11, 12

[4] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. arXiv preprint arXiv:2003.08934, 2020. 1, 2, 7, 8,
9



Figure 3. Visualisation of view-dependent strength of the deep radiance map components (best viewed zoomed in). (a) shows the strength of
each radiance map component as a function of direction. We note that while some components are similar, there is not obvious redundancy.
(b) shows the average absolute contribution of each component for the final colour of point P2 of Figure 2 using the components shown in
(a). Note that all values are normalised for display.

[5] Ken Museth. Hierarchical digital differential analyzer for ef-
ficient ray-marching in openvdb. In ACM SIGGRAPH 2014
Talks, SIGGRAPH ’14, New York, NY, USA, 2014. Associ-
ation for Computing Machinery. 2

[6] Nvidia. Deep Learning Performance Documenta-
tion - Mixed Precision Training. https://docs.
nvidia.com/deeplearning/performance/
mixed-precision-training/index.html, 2021.
[Online; accessed 17-June-2021]. 3

[7] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo-
Martin Brualla. Deformable neural radiance fields. arXiv
preprint arXiv:2011.12948, 2020. 4

[8] Tiancheng Sun, Henrik Wann Jensen, and Ravi Ramamoor-
thi. Connecting measured brdfs to analytic brdfs by data-
driven diffuse-specular separation. ACM Transactions on
Graphics (TOG), 37(6):273, 2018. 3

[9] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S.
Emer. Efficient processing of deep neural networks: A tu-
torial and survey. CoRR, abs/1703.09039, 2017. 3

[10] Bruce Walter, Stephen R. Marschner, Hongsong Li, and Ken-
neth E. Torrance. Microfacet models for refraction through
rough surfaces. In Proceedings of the 18th Eurograph-
ics Conference on Rendering Techniques, EGSR’07, page
195–206, Goslar, DEU, 2007. Eurographics Association. 3



Figure 4. Qualitative comparison of our method vs NeRF on the Lego scene from the dataset of [4] at 8002 pixels using 8 components.
Small cache refers to our method cached at 2563, and large cache at 10243.

Figure 5. Qualitative comparison of our method vs NeRF on the Ship scene from the dataset of [4] at 8002 pixels using 8 components.
Small cache refers to our method cached at 2563, and large cache at 10243.

Figure 6. Qualitative comparison of our method vs NeRF on the Ficus scene from the dataset of [4] at 8002 pixels using 8 components.
Small cache refers to our method cached at 2563, and large cache at 10243.



Figure 7. Qualitative comparison of our method vs NeRF on the Drums scene from the dataset of [4] at 8002 pixels using 8 components.
Small cache refers to our method cached at 2563, and large cache at 10243.

Figure 8. Qualitative comparison of our method vs NeRF on the Mic scene from the dataset of [4] at 8002 pixels using 8 components.
Small cache refers to our method cached at 2563, and large cache at 10243.

Figure 9. Qualitative comparison of our method vs NeRF on the Chair scene from the dataset of [4] at 8002 pixels using 8 components.
Small cache refers to our method cached at 2563, and large cache at 10243.



Figure 10. Qualitative comparison of our method vs NeRF on the Hotdog scene from the dataset of [4] at 8002 pixels using 8 components.
Small cache refers to our method cached at 2563, and large cache at 10243.

Figure 11. Qualitative comparison of our method vs NeRF on the Materials scene from the dataset of [4] at 8002 pixels using 8 components.
Small cache refers to our method cached at 2563, and large cache at 10243.

Figure 12. Qualitative comparison of our method vs NeRF on the Leaves scene from the dataset of [3] at 504× 378 pixels using 6 factors.
Small cache refers to our method cached at 2563, and large cache at 7683.



Figure 13. Qualitative comparison of our method vs NeRF on the Horns scene from the dataset of [3] at 504× 378 pixels using 6 factors.
Small cache refers to our method cached at 2563, and large cache at 7683.

Figure 14. Qualitative comparison of our method vs NeRF on the Fern scene from the dataset of [3] at 504 × 378 pixels using 6 factors.
Small cache refers to our method cached at 2563, and large cache at 7683.

Figure 15. Qualitative comparison of our method vs NeRF on the Flower scene from the dataset of [3] at 504× 378 pixels using 6 factors.
Small cache refers to our method cached at 2563, and large cache at 7683.



Figure 16. Qualitative comparison of our method vs NeRF on the Fortress (‘Minas Tirith’) scene from the dataset of [3] at 504×378 pixels
using 6 factors. Small cache refers to our method cached at 2563, and large cache at 7683.

Figure 17. Qualitative comparison of our method vs NeRF on the Orchids scene from the dataset of [3] at 504× 378 pixels using 6 factors.
Small cache refers to our method cached at 2563, and large cache at 7683.

Figure 18. Qualitative comparison of our method vs NeRF on the Room scene from the dataset of [3] at 504× 378 pixels using 6 factors.
Small cache refers to our method cached at 2563, and large cache at 7683.



Figure 19. Qualitative comparison of our method vs NeRF on the TRex scene from the dataset of [3] at 504 × 378 pixels using 6 factors.
Small cache refers to our method cached at 2563, and large cache at 7683.


