
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

ICCV
#9512

ICCV
#9512

ICCV 2021 Submission #9512. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Supplementary for DCT-SNN: Using DCT to Distribute Spatial Information over
Time for Low-Latency Spiking Neural Networks

Anonymous ICCV submission

Paper ID 9512

1. Overall Training Methodology
1.1. Spiking Neuron Model

In this work, we employ the bio-plausible Leaky
Integrate and Fire (LIF) model [6], which is described by-

τm
dU

dt
= −(U − Urest) +RI, U ≤ Vth (1)

where U denotes the membrane potential, I is the input
current representing the weighted summation of spike-
inputs, τm indicates the time constant for membrane
potential decay, R represents membrane leakage path
resistance, Vth is the firing threshold and Urest is resting
potential. The discretized version of Eqn. 1 implemented in
our work is given as-

uti = λut−1i +
∑
j

wijo
t
j − vthot−1i , (2)

ot−1i =

{
1, if ut−1i > vth
0, otherwise

(3)

where u is the membrane potential, subscripts i and j
represent the post and pre-neuron, respectively, t denotes
timestep, λ is the leak constant= e

−1
τm , wij represents the

weight of connection between the i-th and j-th neuron, o
is the output spike, and vth is the firing threshold. As
evident from Eqn. 2, whenever u crosses this threshold, it
is reduced by the amount vth, implementing a soft-reset.
We implement the proposed DCT-SNN using the model
described above with our encoding scheme, the code for our
work is submitted as part of the supplementary material.

1.2. Surrogate-Gradient Based Learning

To train deep SNNs, we use surrogate-gradient based
backpropagation which performs both the temporal as well
as the spatial credit assignment of errors. Spatial credit
assignment is achieved by spatial error distribution across
all layers, while for temporal credit assignment, we unroll
the network in time and employ backpropagation through

time (BPTT) [15]. The output layer neuronal dynamics is
given as-

uti = ut−1i +
∑
j

wijo
t
j , (4)

here the uis correspond to the membrane potential of i-th
neuron of final (L-th) layer. The final layer neurons do
not spike, rather we just accumulate their potential over
time for classification purpose. These accumulated outputs
are passed through a softmax layer to obtain the class-wise
probability distribution and then the cross-entropy between
the true output and the network’s predicted distribution is
used as loss for backpropagation. The governing equations
are-

L = −
∑
i

yilog(zi), (5)

zi =
eu

T
i∑N

k=1 e
uTk
, (6)

where L is the loss function, y denotes true output, z is the
prediction, T is the total number of timesteps and N is the
number of classes. The derivative of the loss w.r.t. to the
membrane potential of the neurons in the final layer is given
as-

∂L

∂uTi
= zi − yi, (7)

and the weight updates at the output layer are done as-

wij,L = wij,L − η∆wij,L, (8)

∆wij,L =
∑
t

∂L

∂wt
ij,L

=
∑
t

∂L

∂uTi

∂uTi
∂wt

ij,L

=
∂L

∂uTi

∑
t

∂uTi
∂wt

ij,L

,

(9)

where η is the learning rate, and wt
ij,L is the weight

between i-th neuron at layer L and j-th neuron at layer
L− 1 at timestep t. Since the output layer neurons are non-
spiking, the non-differentiability is not an issue here. On
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the other hand, the hidden layer parameter update is given
by-

∆wij,k =
∑
t

∂L

∂wt
ij,k

=
∑
t

∂L

∂oti,k

∂oti,k
∂uti,k

∂uti,k
∂wt

ij,k

,

k = 2, 3, ...L− 1

(10)

where oti,k is the spike-generating function (Eqn. 7), k is
layer index. We approximate the gradient of this function
w.r.t. its input using the linear surrogate-gradient [1] as-

∂o

∂u
= γmax{0, 1− |u− vth

vth
|}, (11)

where γ is a hyperparameter chosen as 0.3 in this work.

1.3. Weight Initialization and Threshold Balancing

A key component in successful implementation of SNNs
is proper initialization of weights and thresholds. As
mentioned in section 2 of the main manuscript, we first
pre-train an analogous ANN and copy the weights to the
SNN for finetuning. It is critical to balance the layerwise
neuronal thresholds to achieve satisfactory performance in
SNNs. One approach is to choose the maximum input to
the neurons computed over all timesteps at each layer as
the threshold at that corresponding layer [12]. However,
empirically, we have found this scheme to be unstable
(training did not converge in some cases due to spike-
vanishing in the deeper layers), hence we select the 99.9
percentile of the pre-activation distribution at each layer to
be that layer’s threshold. Again, such threshold balancing
has been argued to be more robust [11]. Notably, the
threshold computation has to be performed one layer at a
time and sequentially from first layer to the end. Having
initialized the SNN as discussed above, we perform the
surrogate-gradient based learning, the details of which is
depicted in Algorithm 1. In addition, next we also provide
the experimental details in appendix section A.2.

1.4. 2D-DCT Equations

Conversion of pixels denoted by Sxy to DCT coefficients
Fuv for an M ×N block is given by:

Cx =

{ 1√
2

if x = 0

1 else

Fuv =
2√
MN

CuCv×

M−1∑
x=0

N−1∑
y=0

Sxycos

(
uπ

2x+ 1

2M

)
cos

(
vπ

2y + 1

2N

) (12)

Algorithm 1 Procedure of spike-based backpropagation
learning for an iteration.

Input: pixel-based mini-batch of input (X) - target
(Y ) pairs, total number of timesteps (T ), number of
layers (L), pre-trained ANN weights (W ), membrane
potential (U ), membrane leak constant (λ), array of layer-
wise firing thresholds (Vth), dct block-size b, number of
freq. component to train with f
Initialize: U t

l = 0, ∀l = 1, ..., L
// M= generate dct encoded-inputs for the current mini-
batch data for b ∗ b timesteps
// Forward Phase
for t← 1 to T do
Ot

1 = M [t%f ]; // here M[x] denotes the dct-encoded
inputs sampled from frequency index x
for l← 2 to L− 1 do

// membrane potential integrates weighted sum of
spike-inputs
U t
l = U t−1

l +Wl ∗Ot
l−1

if U t
l > Vth then

// if membrane potential exceeds Vth, a neuron
fires a spike
Ot

l = 1, U t
l = U t

l − Vth
else

// else, membrane potential decays exponentially
Ot

l = 0, U t
l = λ ∗ U t

l

end if
end for
// final layer neurons do not fire
U t
L = U t−1

L +WL ∗Ot
L−1

end for
//calculate loss, Loss=cross-entropy(UT

L , Y )
// Backward Phase
for t← T to 1 do

for l← L− 1 to 1 do
// evaluate partial derivatives of loss with respect to
weight by unrolling the network over time
4W t

l = ∂Loss
∂Otl

∂Otl
∂Utl

∂Utl
∂W t

l

end for
end for

2. Experimental details
2.1. Datasets and Models

We perform our experiments on VGG9 for CIFAR10
dataset, VGG11 for CIFAR100 and VGG13 for
TinyImagenet. Some comparisons with other encoding
schemes are done using VGG5.

2.2. Training Parameters

For all datasets, we follow some standard data
augmentation techniques such as padding by 4 pixels on

2
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Figure 1: Training Accuracy with Limited Frequencies.

each side, and a 32 × 32 crop is randomly sampled from
the padded image or its horizontally flipped version (with
0.5 probability of flipping). While testing, the original
32 × 32 images are used. Both training and testing data
are normalized using 0.5 as mean and standard deviation for
all channels. For training the ANNs, we use cross-entropy
loss with stochastic gradient descent optimization (weight
decay=0.0001, mometum=0.9). In the ANN domain,
VGG5, VGG9 and VGG11 are trained for a total of 300
epochs, with an initial learning rate of 0.1, which is divided
by 10 at each 100-th epoch. VGG13 with TinyImagenet is
trained with similar learning rate schedule, but with initial
learning rate of 0.01. The ANNs are trained with some
architectural constraints to avoid significant loss during
subsequent ANN-SNN conversion [4, 12]. The ANNs
do not have bias terms as it increases the difficulty of
threshold balancing. Again, batch-normalization is not
used, rather dropout [13] is used as the regularizer and a
constant dropout mask is used across all timesteps while
training in SNN domain. Furthermore, average-pooling
is used to reduce the feature map size since max-pooling
causes significant information loss in SNNs [4]. During
training the ANN, the weights are initialized using Xavier
initialization [5]. After conversion, for training in the SNN
domain, networks are trained for 20-30 epochs with cross-
entropy loss and adam optimizer (weight decay=0.0005).
Initial learning rate is kept at 0.0001, which is halved every
5 or 6 epochs. The leak constant λ is chosen as 0.9901 for
all simulations.

3. Training with Curtailed Frequencies
We show the effect of training with limited frequencies

in Figure 1. The frequencies are repeated cyclically until the

specified number of timesteps. For instance, the accuracy
for 8 frequencies given 3 times each (24 timesteps) is
69.7%. We note that during training, there is no benefit to
dropping frequencies at iso-latency requirements.

4. Computational Cost
The equations for calculating the number of operations

in a particular layer of an ANN are given by

#ANNops =


kw × kh × cin × hout × wout × cout,

Conv layer
nin × nout,

Linear layer
(13)

where kw(kh) denote filter width (height), cin(cout) is
number of input (output) channels, hout(wout) is the height
(width) of the output feature map, and nin(nout) is the
number of input (output) nodes.

5. Performance Comparison with Different
Encoding Schemes

5.1. Performance Comparison with Temporal
Encoding Schemes on MNIST

Table 1: Accuracy of various temporal encoding schemes
on MNIST

Reference Accuracy(%) Timesteps
Kheradpisheh et al. [7] 97.4 256

Comsa et al. [3] 97.9 not reported
Stephan et al. [14] 85 10

Yu et al. [17] 78 100
Xu et al. [16] 87 not reported

Beyeler et al. [2] 91.6 500
This work 98.54 16
This work 86.7 2
This work 97.3 5

To further compare the performance of the proposed
DCT-SNN encoding scheme with recent temporal methods
on MNIST, we implement it on a shallow network with just
1 hidden layer consisting of 784-100-10 neurons (all fully-
connected). The results are reported in Table 1. As can
be seen, our methods outperforms these recent temporal
methods in terms of accuracy and also converges at much
lower timesteps.

5.2. Performance Comparison with Different
Encoding Schemes on CIFAR

To further compare our results with other reported works
in terms of timesteps required at iso-accuracy level, we

3
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Figure 2: Accuracy versus Latency curve for various coding schemes, the values for TTFS [10], Phase [8], Burst [9] and rate
[11] have been adopted from [10].

.

depict the inference curve across different timesteps in
Fig. 2. The figure is adopted from Fig. 6 of [10] and
demonstrates the results of “T2FSNN” encoding scheme,
which is a temporal encoding scheme and other rate and
temporal encoding schemes such as “Rate” [11], “Phase”
[8], and “Burst” coding [9]. The left graph in Fig. 2 is
recreated for CIFAR-10, and shows ∼ 200 timesteps for
the fastest convergence among these encoding methods, in
contrast, we achieve ∼ 90% accuracy in just 48 timesteps,
saturating far earlier than any of these methods. From Fig. 6
of [10], we can tell that the best version of “T2FSNN”
first reaches 90% roughly at 240 steps, “Burst” at 300,
“Phase” at 425, and “Rate” at 1200 timesteps, showing
that we reduce latency by orders of magnitude, resulting
in convergence at much fewer timesteps. The network
is slightly different here, ours is VGG9 and the network
used in [10] is VGG16, but in our opinion, that affects
final convergence accuracy more than it affects orders of
magnitude of timesteps for inference. Similarly, we exceed
68% accuracy in 48 timesteps when training a VGG11
on CIFAR100. The graph on the right in Fig. 2 shows
the convergence statistics for VGG16 on CIFAR100 using
“T2FSNN”, “Burst”, “Phase” and “Rate”. The best version
of “T2FSNN” reaches 68% roughly at 500 steps, “Burst” at
1500, “Phase” at 2000, and “Rate” does not go above 60%
in even 3000 timesteps.

6. Training with Interleaved and Intermittent
Frequencies

In this section, we analyze the effect of training with (a)
interleaved and (b) intermittent frequencies, instead of all
16 frequency components given in a cyclic order.

For the interleaved case, instead of giving input as
frequencies 0,1,2,. . . 15,0,1,2,. . . .15,0,1,2,. . . 15 we input

them as 0,0,0,1,1,1,2,2,2, . . . .15,15,15. So, one specific
basis is repeated for 3 subsequent timesteps before giving
the next frequency as input. Our original cyclic scheme
gave the best reported accuracy of 89.94% and the
interleaved scheme only achieved 79.7%. A similar cyclic
vs interleaving experiment was done with the frequencies
limited to top 8, repeated for 3 cycles (24 timesteps). The
cyclic scheme achieved 69.7% and the interleaved achieved
53.73%. We believe this drop is due to the resetting of
membrane potential as it fires between timesteps, causing
temporal dependency to be incorporated between different
timesteps and interleaving cannot leverage this dependency.
Additionally, since the earlier DCT coefficients contain
most of the energy, the spikes at the later timesteps start
dying out with interleaved frequencies.

Next, we tried giving intermittent frequencies such
as (0,2,5,7,9,10,12,15) given cyclically for 6 cycles
(48 timesteps) and got 84.4%, an expected drop from
89.9% with all frequencies for 3 cycles (equivalent 48
timesteps) since we are only giving partial information for
reconstruction.

As an additional experiment to re-emphasize that our
ordering is beneficial, we give only the top 8 frequencies
for the same number of cycles as the previous experiment
(6 cycles, 48 timesteps) and get 87.2%, which is 3% better
than the scheme with intermittent frequencies, validating
the importance of ordering timesteps.
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