A. Supplementary Material: Unconditional Scene Graph Generation

This document supplements our paper Unconditional Scene
Graph Generation with dataset-level statistics, the mathe-
matical description of the MMD kernels, and additional re-
sults on the different applications.

A.1l. Dataset-level statistics

In addition to the MMD metrics (sample level compari-
son), we present the statistics to compare the generated and
test samples on the dataset level. We compare 20k samples
of generated scene graphs from SceneGraphGen, against
the ground truth i.e. the test dataset from Visual Genome.
Figure[T|reports different patterns such as object occurrence
(a), relationship occurrence (b) and object co-occurrence
(c). Object occurrence computes the occurrence probabil-
ity of each object label over the whole dataset. Similarly,
relationship occurrence computes the occurrence probabil-
ity of each relationship label over the whole dataset. The
object co-occurrence is computed by collecting the fre-
quency (normalized) with which two different object labels
co-occur in the same scene graph (scene). For improved vis-
ibility of co-occurrence patterns, we use a maximum thresh-
old of 0.05. In all measurements in Figure [I] we observe
similar patterns between the generated and ground truth
datasets. Since each object category can occur multiple
times in an image (instances), we compare the count distri-
bution (1, 2, so on) for each object category using Kullback-
Leibler (KL) divergence of generated dataset from the test
dataset. Figure 2] shows the KL divergence of object count
distribution for each object category, with a low average
value of 0.048.

A.2. Object occurrences in the generated images

Figure[3]|shows the object occurrence of detected objects
(using FasterRCNN) in the images generated by StyleGAN
(unconditional) vs the images generated by sg2im on scene
graphs generated by SceneGraphGen (sg2im-SGG). We ob-
serve that sg2im-SGG generates images with more objects
detected and better object statistics than StyleGAN. The
FID of StyleGAN on Visual Genome is however 66.3, so
better than sg2im-SGG, which we attribute to the respec-
tive image generative models, instead of the quality of input
scene graph.

A.3. Additional examples from applications

We provide some additional examples for image genera-
tion in Figure d] and scene graph completion in Figure 5]

A.4. Mathematical formulation of the MMD kernels

Here we give the details on the kernels used for the MMD
evaluation.

A.4.1 Random walk graph kernel

A general formulation for random walk kernel is adopted
from [2], which allows freedom to choose suitable node and
edge kernels. In two graphs G, and GG, we want to compare
two nodes r and s respectively. We can compare these two
nodes by comparing all walks of length p in G, starting
from r against all walks of length p in G, starting from s.
The similarity between each walk-pair can be performed by
comparing the respective nodes and edges encountered in
the walks using suitable kernels. The kernel to compare any
two nodes is given by
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To compare the overall structure, the kernel in Equationis
summed over all pairs of nodes, and normalized with maxi-
mum of the kernel evaluation of each graph and itself.
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For comparing nodes, we use the simple Kronecker delta
function which is 1 when the node categories match and 0
otherwise, i.e. kpnode(r, s) = 0(r, s). However, since there
are multiple nodes with the same category, the importance
of the nodes in a graph will be lower for the category with
one occurrence and higher for multiple occurrences. In
fact, the importance of a category with multiple occurrences
should diminish as the occurrences increase. For this pur-
pose, the node kernel is normalized with the frequency of
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(c) Object Co-Occurrence
Figure 1. Comparison of the dataset-level statistics of generated scene graphs against ground truth scene graphs from Visual Genome. a.)

Object Occurrence, b.) Relationship Occurrence, c.) Object Co-Occurrence
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Figure 2. KL divergence of the generated dataset from test dataset, which compares the object count distribution (number of instances of a

particular object category per scene) for each object category
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Figure 3. Comparison of occurrence of objects detected by Faster R-CNN on the images generated by Unconditional-GAN (StyleGAN2)

vs. sg2im+SceneGraphGen model

occurrence in a graph. The node kernel is given by
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where o(s)

For comparing edges, we use the Kronecker delta function,
i.e. keage(p, q) = 0(p, q).

A4.2 Object set kernel

We want to compare two sets of object instances. Hein et
al. [3]] showed that for a domain set X, two sets A € X,
B € X, apositive definite kernels kjqpe; and kcoynt, We can

define a general set kernel between A and B as:

kset(Aa B) = Z Z klabel ($, y)kcount (A($)7 B(y))

TeEX yex
®)

We choose kjgper(z,y) = 6(z,y) as the Kronecker delta
function which is one when both x and y have the same
object categories. A(x) is the number of times element
appears in A and B(y) is the number of times element y
appears in B. k.oyn: 18 defined as

1
1+ ]A(z) - B(y)]

kcount 1 the generalized t-student kernel [1, 4]. This for-
mulation allows us to capture when the two sets have the

kcount(A(x)a B(y)) (6)
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Figure 4. Additional examples of 64 x 64 images generated using sg2im on the corresponding scene graphs generated by SceneGraphGen
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Figure 5. Additional examples of scene graph completions from an initial partial scene graph using SceneGraphGen



same object category member as well as how similar are
the counts of those object category members. Similar to the
graph kernel above, the object-set kernel is also normalized
with the maximum of kernel evaluation of each object set
with itself.

kset (Aa B)
max (kget (A, A), kser (B, B))

EN.(A, B) =

set

(7

A.5. Anomaly detection comparison

Figure [6] demonstrates a comparison between Scene-
GraphGen and the GraphRNN baseline on the NLL plot,
extending Figure 6 (left) in the main paper. Our interpreta-
tion is that our model is more sensitive to the level of dataset
corruption compared to the baseline, i.e. the NLL gap be-
tween the different levels is larger than for the baseline.
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Figure 6. Distribution of NLL under varied levels of corruption

A.6. Checking for overfitting

Figure[7]shows examples of generated graphs and the re-
spective nearest graph (via graph kernel comparison) from
training data. The graphs are not identical, i.e. the model is
not reproducing examples from the training set.
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Figure 7. Examples of generated graphs as well as closest sample
from the training set.
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