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In this appendix, we provide additional information on
the PASTIS dataset and our exact model configuration. We
also provide complementary qualitative experimental re-
sults.

1. PASTIS Dataset

Overview. The PASTIS dataset is composed of 2433
square 128 x 128 patches with 10 spectral bands and at 10m
resolution, obtained from the open-access Sentinel-2 plat-
form. ! For each patch, we stack all available acquisitions
between September 2018 and November 2019, forming our
four dimensional multi-spectral SITS: T'x C' x H x W. The
publicly available French Land Parcel Identification System
(FLPIS) allows us to retrieve the extent and content of all
parcels within the tiles, as reported by the farmers. Each
patch pixel is annotated with a semantic label correspond-
ing to either the parcels’ crop type or the background class.
The pixels of each unique parcel in the patch receive a cor-
responding instance label.

Dataset Extent. The SITS of PASTIS are taken from 4
different Sentinel-2 tiles in different regions of the French
metropolitan territory as depicted in Figure la. These re-
gions cover a wide variety of climates and culture distribu-
tions. Sentinel tiles span 100 x 100km and have a spatial
resolution of 10 meter per pixel. Each pixel is characterized
by 13 spectral bands. We select all bands except the atmo-
spheric bands BO1, B09, and B10. Each of these tiles is sub-
divided in square patches of size 1.28 x 1.28km (128 x 128
pixels at 10m/pixel), for a total of around 24, 000 patches.
We then select 2, 433 patches ( 10% of all available patches,
see Figure 1b), favoring patches with rare crop types in or-
der to decrease the otherwise extreme class imbalance of the
dataset.
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(c) Single patch.

(b) Selected patches.

Figure 1: Data Location. Spatial distribution of the four
Sentinel tiles used in PASTIS 1a, and of the selected patches
of tile T30UXV 1b. We show an example of patch in Ic,
and highlight with red circles examples of parcels that are
mostly outside of the patch’s extent and thus annotated with
the void label. The green circle O highlight a parcel par-
tially cut off by the patch borders, but with sufficient over-
lap to be kept as a valid parcel.



Nomenclature The FLPIS uses a 73 class breakdown for
crop types. We select classes with at least 400 parcels and
with samples in at least 2 of the 4 Sentinel-2 tiles. This
leads us to adopt a 18 classes nomenclature, presented in
Figure 2. Parcels belonging to classes not in our 18-classes
nomenclature are annotated with the void label, see below.

Patch Boundaries. The FLPIS allows us to retrieve the
pixel-precise borders of each parcel. We also compute
bounding boxes for each parcel. The parcels’ extents are
cropped along the extent of their 128 x 128 patch, and the
bounding boxes are modified accordingly. Parcels whose
surface is more than 50% outside of the patch are annotated
with the void label, see Figure 1c.

Void and Background Labels. Pixels which are not
within the extent of any declared parcel are annotated with
the background “stuff’ label, corresponding to all non-
agricultural land uses. For the semantic segmentation task,
this label becomes the 20-th class to predict. In the panoptic
setting, this label is associated with pixels not within the ex-
tent of any predicted parcel. We do not compute the panop-
tic metrics for the background class, since our focus is on
retrieving the parcels’ extent rather than an extensive land-
cover prediction. In other words, the reported panoptic met-
rics are the “things” metrics, which already penalize parcels
predicted for background pixels by counting them as false
positives.

The void class is reserved for out-of-scope parcels, ei-
ther because their crop type is not in our nomenclature or
because their overlap with the selected square patch is too
small. We remove these parcels from all semantic or panop-
tic metrics and losses. Predicted parcels which overlap with
an IoU superior to 0.5 with a void parcel are not counted as
false positive or true positive, but are simply ignored by the
metric, as recommended in [2].

Cross-Validation. The 2,433 selected patches are ran-
domly subdivided into 5 splits, allowing us to per-
form cross-validation. The official 5-fold cross-validation
scheme used for benchmarking is given in Table 1. In or-
der to avoid heterogeneous folds, each fold is constituted of
patches taken from all four Sentinel tiles. We also chose
folds with comparable class distributions, as measured by
their pairwise Kullback-Leiber divergence. We show the re-
sulting class distribution for each fold in Figure 3. Finally,
we prevent adjacent patches from being in different folds to
avoid data contamination. Geo-referencing metadata of the
patches and parcels is included in PASTIS, allowing for the
constitution of geographically consistent folds to evaluate
spatial generalization. However, this is out of the scope of
this paper.

Label and Color Class Name Number of parcels

Backgmund -
1 Meadow 31292
_Soft winter wheat 8206
3 Corn 13123
_Winter barley 2766
5 Winter rapeseed 1769
_ Spring barley 908
7 Sunflower 1355
_Grapevine 10640
9 Beet 871
PG wincer iticale 1208
11 Winter durum wheat 1704
12 Fruits, vegetables, flowers 2619
13 Potatoes 551
_Leguminous fodder 3174
15 Soybeans 1212
16 Orchard 2998
17 Mixed cereal 848

Sorghum 707
19 Void label 35924

Figure 2: Color code of our class nomenclature, and the
number of parcel per class.
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Figure 3: Class distribution for the five folds (in log-scale).

Fold | Train Val Test

I 1-2-3 4 5
Im |234 5 1
ar | 3-4-5 1 2
IV | 4-5-1 2 3
vV 512 3 4

Table 1: Official 5-fold cross validation scheme. Each line
gives the repartition of the splits into train, validation and
test set for each fold.

Temporal Sampling. The temporal sampling of the se-
quences in PASTIS is irregular: depending on their location,
patches are observed a different number of times and at dif-



ferent intervals. This is a result of both the orbit schedule
of Sentinel-2 and the policy of Sentinel data providers not
to process tile observations identified as covered by clouds
for more than 90% of the tile’s surface. As this corresponds
to the real world setting, we decided to leave the SITS as is,
and thus to encourage methods that can favourably address
this technical challenge. As a result, the proposed SITS are
constituted of 33 to 61 acquisitions. In order to assess how
our model handles lower sampling frequencies, we limited
the number of available acquisitions at inference time?, and
observed a drop of performance of —0.7, —2.0, —5.5, and
—14.6 points of mloU with 32, 24, 16, and 8 available dates,
respectively.

Clouds Cover. Even after the automatic filtering of pre-
dominantly cloudy acquisitions, some patches are still par-
tially or completely obstructed by cloud cover. We opt to
not apply further pre-processing or cloud detection, and
produce the raw data in PASTIS. Our reasoning is that an
adequate algorithm should be able to learn to deal with such
acquisitions. Indeed, robustness to cloud-cover has been
experimentally demonstrated for deep learning methods by
RuBBwurm and Koérner [3, 4].

2. Implementation Details

In this section, we detail the exact configuration of our
method as well as the competing algorithms evaluated.

Training Details. Across our experiments, we use Adam
[1] optimizer with default parameters and a batch size of
4 sequences. The semantic segmentation experiments use a
fixed learning rate of 0.001 for 100 epochs. For the panoptic
segmentation experiments, we start with a higher learning
rate of 0.01 for 50 epochs, and decrease it to 0.001 for the
last 50 epochs.

U-TAE. In Table 2, we report the width of the feature
maps outputted by each level of the U-TAE’s encoder and
decoder. In both networks, we use the the same convolu-
tional block shown in Figure 4 and constituted of one 3 x 3
convolution from the input to the output’s width, and one
residual 3 x 3 convolution. In the encoding branch, we use
Group Normalisation with 4 groups and Batch Normalisa-
tion in the decoding branch .

For the temporal encoding, we chose a L-TAE with 16
heads, and a key-query space of dimension dy, = 4. We use
Group Normalisation with 16 groups at the input and output
of the L-TAE, meaning that that the inputs of each head are
layer-normalized.

2This can be interpreted as the test set having an increased cloud cover.
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Figure 4: Structure of the convolutional block used in the
spatial encoder-decoder network. This block maps a fea-
ture map with D,,, channels to a feature map with D,
channels.

Table 2: Width of the feature maps outputted at each level of
the encoding and decoding branches of the spatial module.

Encoder Decoder
€1 64 d1 32
€9 64 dg 32
€3 64 d3 64
eq 128 dy 128

Recurrent Models. We use the same U-Net architecture
for our models and U-BiConvLSTM and U-ConvLSTM, but
simply replace the L-TAE by a ConvLSTM or BiConvL-
STM respectively. The hidden state’s size of the biCon-
vLSTM is chosen as 32 in both directions, and 64 for the
convLSTM. For the recurrent-convolutional methods Con-
vLSTM and ConvGRU not using a U-Net, we set hidden
sizes of 160 and 188 respectively.

3D-Unet. For this network, we use the official PyTorch
implementation of Rustowicz et al. [5]. This network is
constituted of five successive 3D-convolution blocks with
spatial down-sampling after the 2nd and 4th blocks. Each
convolutional block doubles the number of channels of the
processed feature maps, and the innermost feature maps
have a channel dimension set to 128. Leaky ReLu and
3D Batch Normalisation are used across the convolutional
blocks of this architecture. The sequence of feature maps is
averaged along the temporal dimension to produce the final
embedding of the input image sequence. In their implemen-
tation, the authors used a linear layer to collapse the tempo-
ral dimension, yet this was not a valid option for PASTIS as
the sequences have highly variable lengths and the sequence
indices do not correspond to the same acquisition date from
one sequence to another.

FPN-ConvLSTM. For this architecture, the input se-
quence of images is first mapped to feature maps of channel
dimension 64 with two consecutive 3 x 3 convolution lay-
ers, followed by Group Normalization and ReLu. A 5-level
feature pyramid is then constructed for each date of the se-
quence by applying to the feature maps 4 different 3 x 3
convolution of respective dilation rates 1, 2, 4 and 8, and



Table 3: Configuration of the four MLPs of PaPs

MLP | Layers Final Layer
Shape | 256 + 128 + S2 -

Size 256 — 128 — 2 Softplus
Class | 256 — 128 — 64 — K Softmax

computing the spatial average of the feature map. These
5 maps are concatenated along the channel dimension, and
processed by a ConvLSTM with a hidden state size of 88.
We found it beneficial to use a supplementary convolution
before the ConvLSTM to reduce the number of channels of
the feature pyramid by a factor 2.

PaPs module. In the PaPs module, the saliency and
heatmap predictions are obtained with two separate convo-
lutional blocks operating on the high resolution feature map
d; with 32 channels. These blocks are composed of two
convolutional layers of width 32 and 1 respectively. We use
Batch Normalisation and ReLu after the first convolution,
and a sigmoid after the second.

The 256-dimensional multi-scale feature vector (128 +
64 + 32 + 32) is mapped to the shape, class and size pre-
dictions by three different MLPs described in Table 3. The
inner layers use Batch Normalisation and ReLu activation.

The residual CNN used for shape refinement is com-
posed of three convolutional layers : 1 +— 16 — 16 — 1,
with ReLu activation and instance normalisation on the first
layer only.
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Figure 5: Per class IoU of the three best performing se-
mantic segmentation models. Our U-TAE outperforms the
other two approaches on every classes, and brings notice-
able improvement on hard classes such as Mixed cereal and
Sorghum.

Handling Sequences of Variable Lengths. All models
are trained on batches of sequences of variable length. To
facilitate the handling of batches by the GPU, we append
all-zeroes images at the end of shorter sequences to match
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Figure 6: Confusion matrix of U-TAE for semantic segmen-
tation on PASTIS. The color of each pixel at line ¢ and col-
umn j corresponds to the proportion of samples of the class
1 that were attributed to the class j.

the length of the longer sequence in the batch. We retain a
padding mask to prevent the spatial and temporal encoding
of padded values, and to exclude these padded values from
temporal averages.

3. Additional Results

In Figure 5, we show the class-wise performance of the
three best performing semantic segmentation models, dis-
playing an improvement of U-TAE compared to the other
methods across all crop types. We also show on Figure 6
the confusion matrix of U-TAE. Unsurprisingly, confusions
seem to occur between semantically close classes such as
different cereal types, or Sunflower and Fruits, Vegetable,
Flower.

In Figure 7, we present qualitative results illustrating the
predicted panoptic and semantic segmentations compared
to the ground truth. In particular, we show some failure
cases in which thin or visually fragmented parcels are not
recovered correctly.

In Figure 8, we illustrate the results of the semantic seg-
mentation for our method and three other competing ap-
proaches: 3D-Unet, U-BiConvLSTM, and convGRU. We
show how our multi-scale temporal attention masks allow
our predictions to be both pixel-precise and consistent for
large parcels.

Finally, we present in Figure 9 an example of infer-
ence using a single image from the sequence. As expected
for mono-temporal segmentation, the parcel classification is
poor. Furthermore, we show a case of a border that is essen-



tially invisible on a single image, but that our full model is
able to detect using the entire sequence of satellite images.
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(a) Image from the sequence. (b) Panoptic annotation. (c) Panoptic segmentation. (d) Semantic segmentation.

Figure 7: Qualitative Panoptic Segmentation Results. We represent a single image from the sequence using the RGB
channels (a), and whose ground truth parcel’s limit and types are known (b). We then represent the parcels predicted by our
panoptic segmentation module (c), and the pixelwise prediction of our semantic segmentation module (d). See Figure 2 for
the color to crop type correspondence. We highlight with a green circle O a large, fragmented parcel declared as one single
field. This leads to predictions with low confidence and a low panoptic quality. Conversely, the cyan circle O highlights such
fragmented parcel which is correctly predicted as a single instance. This suggests that our network is able to use the temporal
dynamics to recover ambiguous borders. We highlight a failure case with the red circle O, for which many thin parcels are
not properly detected, resulting in a low panoptic quality. We observe that the semantic segmentation model struggles as well
for such thin parcels. Finally, we highlight with a blue circle O an example in which the panoptic prediction is superior to the
semantic segmentation, indicating that detecting parcels’ boundaries and extent can be informative for their classification.



(a) Single image. (b) Annotation. (c) U-TAE. (d) 3D-Unet. (e) U-BiConvLSTM. (f) ConvGRU.

Figure 8: Qualitative Semantic Segmentation Results. We represent a single image from the sequence using the RGB
channels (a), and whose ground truth parcel’s limit and crop type are known (b). We then represent the pixelwise prediction
from our approach (c), and for three other competing algorithms (d-f). The different predictions shown on this figure illustrate
the importance of the resolution at which temporal encoding is performed. ConvGRU applies a recurrent-convolutional
network at the highest resolution, which results in predictions with high spatial variability. As a consequence, the prediction
over large parcels are inconsistent (blue circles O). Conversely, U-BiConvLSTM applies temporal encoding to feature maps
with a larger receptive field, resulting in more spatially consistent predictions. Yet, this architecture often fails to retrieve
small or thin parcels. In contrast, our U-TAE produces spatially consistent predictions on large parcels, while being able to
retrieve such small parcels (green circles O). 3D-Unet also uses temporal encoding at different resolution levels, yet fails to
recover these small parcels.



(a) Single observation. (b) Panoptic annotation. (c) Mono-temporal prediction. (d) Multi-temporal prediction.

Figure 9: Mono-temporal Panoptic Segmentation. We train our mono-temporal model on a single image (a), with panoptic
annotation (b). We then compare the results of the mono-temporal model in (c) with the results our full model when perform-
ing inference on the full length sequence (d) from which the single patch (a) is drawn. First, we observe that many parcels are
not detected by the mono-temporal model, indicating an overall low predicted quality. Second, we can see that most detected
parcels are misclassified by the mono-temporal model. This is in accordance with the low semantic segmentation score of
the mono-temporal model: crop types are hard to distinguish from a single observation. Last, adjacent parcels with no clear
borders are predicted as a single parcel, when the multi-temporal model is able to differentiate between the two parcels (cyan
circle O). This illustrates how using SITS instead of single images can help resolve ambiguous parcels delineation.



