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In this supplementary material, we first report qualitative
results for video clip retrieval. Then we provide more analy-
sis on semi-supervised action recognition. Finally, we make
a larger comparison with self-supervised methods that use
other than Kinetics dataset1 for training.

1. Qualitative results for video retrieval

To further investigate the quality of the learned represen-
tation, we illustrate a few success and failure examples in
Figure 1. Despite that some of the retrieved videos are from
different action classes than the query video, the learned
representation successfully captures similar motion patterns
and not the appearance context. For example, on the first
row the model captures hand motion, on the second row the
model captures the dominant human poses.

2. Semi-supervised action recognition

We further analyze our method for semi-supervised video
recognition with ablation on the size of source dataset
(Dsource) for self-training. The results are shown in Table 1.
In the main paper, following competing methods, we use a
labelled set (20% or 50% of training set) as DMPLG and the
full training set as Dsource. Here, we experiment by remov-
ing labelled samples from the training set to have a trimmed
Dsource = training set−DMPLG, with the remaining 80% or
50% samples of the training set. With this, the performance
drops for both labeled subsets but the larger drop of 2.4%
for a 50% labelled subset is due to the drastic decrease in
the size of Dsource. While the 20% labelled subset loses only
0.1% as the data for self-training is only slightly reduced.
This further shows the importance of our self-training.

∗Qualcomm AI Research is an initiative of Qualcomm Technologies,
Inc.

1Datasets used in this paper were downloaded and experimented on by
primary author

UCF101, split 1

20% labelled 50% labelled Dsource / Training dataset

Jing et al. [15]‡ 48.7 54.3 training set
Rizve et al. [29] 39.4 50.2 training set

MotionFit (ours) 57.7 59.0 training set
MotionFit (ours) 57.6 56.6 training set −DMPLG

‡ Use extra labels to pre-train a 2D CNN.

Table 1: Comparison with semi-supervision on video
recognition at smaller scale. We report top-1 accuracy of
models fine-tuned on 20% (or 50%) of UCF101 training
data, which is also our DMPLG (same as Dtarget).

3. Comparison with self-supervised methods
for action recognition

In Table 2 we list more results of self-supervised methods
for action recognition that also utilize datasets other than
Kinetics for training. Our method still outperforms other
visual-only methods, including those that use a larger dataset
for pre-training [8].

4. Comparison with self-supervised methods
for clip retrieval

In Table 3 we list more results of self-supervised methods
for clip retrieval that also utilize other than Kinetics dataset
for training. Our method still outperforms other visual-only
methods.
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Figure 1: Success and failure examples for video retrieval. The left examples show top-retrieved videos belonging to the
same action class as the query video. On the right, all three retrieved videos are from a different class. While our model may
retrieve videos from different action classes, it still captures distinctive motion patterns like hand motion and human poses.
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Table 3: Comparison with self-supervised methods on video clip retrieval. We report recall values R@n for n = 1, 5, 20
on UCF101 and HMDB51 split 1. Our approach is best when only considering the visual modality and on par with methods
that use an additional audio modality during training.
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