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1. Network Architecture and Parameters

We provide the details of parameters and layer informa-
tion of our network in this section. It discusses the encoder
for R7qys Rfayl and Rffayl. The coarse decoder is adopted
from [3] and will not be covered here.

Emptiness R, Encoder Our approach takes a partial
point cloud Q and sampled rays R}, as inputs and encodes
them into a global feature vector (GFV) with emptiness se-
mantics, which will be used to predict complete point cloud
with a coarse-to-fine strategy. The parameters for each layer
in our encoder is shown in Table 1. For vanilla MSN+ray,

we use the same encoder architecture as in Table 1.

Lastly, global features are concatenated together to form a
single global feature vector.

PCN [10] has a deeper encoder by appending extra FE
layers to learn a more abstract and latent global feature. To
keep consistent with its original network, we construct an
encoder for PCN+ray as shown in Table 2.

It first concatenates the global feature ¢’ to each f; and g;
to obtain augmented point feature matrices F' and G whose
rows are the concatenated feature vectors [f;, '] and [g;, ¢']-
Then, F and G are respectively passed through another two-
layer MLP followed by point-wise max-pooling (as the first
FE layer). The updated global feature vector g* is outputted
by concatenating the pooling results.

Input Partial Points @ | Ray Samples R;.,, Emptiness R¢, , and R¢, , Encoder Rays RY, , and
3 MLPs 64, 128, 1024 64, 128, 1024 R;‘fayz are sampled using the coarse points P¢. The sampled
Max-pool 1024 1024 empty rays R, € RNe*5*9 tell whether a coarse point
Concatenate 2048 in P€ is in an ‘émpty’ region while RffayQ € RNexKx15
Output Global Feature Vector ¢ represents the boundaries of real shapes. For the sampling
method, we refer readers to our paper. In our experiments,
Table 1: Encoder of ME-PCN N, = 8192 for our method and vgnﬁla MSN+ray,pand N, =
1024 for PCN+ray. Both networks use the same emptiness
Input Partial Points Q | Ray Samples R, encoder for local feature extraction, as shown in Table 3.
2 MLPs 128, 256 128, 256
Max-pool 1.+ 256 256 | 256 41+ 256 Input Ray Samples R, | Ray Samples R?, ,
Concatenate | 7" GFV ¢': 512 v 3 MLPs 16, 32, 32 16, 32,32
Tile & Cat | F:|Q|x768 | G:[R;,,| x 768 Grouping N x 32 N, x 32
2 MLPs 512, 1024 512, 1024 Concatenate N, x 64
Max-pool 1024 1024 Output Local Feature Vector
Concatenate 2048
Output Global Feature Vector g* Table 3: Local Emptiness Encoder for ray R¢,,, and RY,

Table 2: PCN+ray R

ray EnCoder

The core part of Feature Encoding (FE) layers is 3 sepa-
rate Multilayer Perceptron Layers (MLP), which transform
input points {gi|¢; € Q} or ray samples {r|r € R}, }
into point features. A point-wise max-pooling is respec-
tively performed on point features to obtain global features.

Rays in Rfayl represent empty space neighboring to
coarse points, while RﬁayQ informs the coarse points with
the real shape boundary. Two FE layers are respectively
used to encode Rfayl and Rfmﬂ. Grouping operation is
a PointConv-style aggregation defined in [7]. We train the
entire network end-to-end with the loss function in Equa-

tion (10) of the paper with A\; = 1.0 and Ay = 0.1.
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Figure 1: Tests on real scans. From left to right: image and mask of the target object; input partial scan; predicted coarse
point cloud; predicted final point cloud from two different viewpoints. Note that blue points in (b),(f)/(c),(g) are sampled

from the empty rays R,q,/R

*
ray*

2. Tests on Real Scans

We train our network with ShapeNet and test it on real
scans to investigate its generalization ability. Four real
scans are taken from [4] for the testing, where the 3D points
are back-projected from a single depth map and aligned to
a canonical system. The corresponding 2D masks are ex-
tracted from RGB images.

From the results in Figure 1, we can see that our method
can achieve plausible results ‘in the wild’. The ray feature
works quite well even though the depth scans are captured
by users without training.

3. Robustness of Encoding Emptiness

In real-world applications, the input point clouds are usu-
ally involved with background points. For such a scenario,
former works usually adopt a binary mask on the image
plane to filter background points [9, 4]. This kind of masks
can be directly used in our cases to learn emptiness. Since
the mask should be given for most methods in real applica-
tions, in this section, we would like to explore the robust-
ness of our method to imperfect masks. We simulate the
masks extracted from real-world depth/RGB data, and add
random segmentation errors (see Figure 2) to the boundaries
of masks. We fine-tune our model on all categories using the
noisy mask for 2 epochs. Test results are shown in Table 6.
From the results we can see that the performance measured
in both EMD and CD is only degraded slightly, which ver-
ifies the robustness of our method. It further demonstrates
that, for synthesized depth scans, we can obtain masks by
thresholding the depth maps; for real scans, we can use seg-
mentation methods to extract masks from RGB/RGBD im-
ages. For both cases, our method can deliver faithful results.

Green points in (c), (g) are sampled from real points.

(a) Before (b) After

Figure 2: Adding noise to simulate the mask from real
world data: a) mask of chair back without noise; b) mask
with noises on boundaries.

4. More Qualitative Comparisons

We list more qualitative comparisons with previous
methods in Figure 3.

5. More Quantitative Comparisons
5.1. Comparison with Existing Methods

In this section, we report our quantitative evaluation on
all 14 categories: faucet, cabinet, table, chair, vase, lamp,
bottle, clock, display, knife, mug, fridge, scissors and trash-
can. Some methods (PCN [10], CRN [5], GR-Net [8], and
MSN [3]) support upsampling to recover higher resolution
of outputs, we compare our methods with them under the



methods |faucet cabinet table chair vase lamp bottle clock display knife mug fridge scissors trashcan|average
PCN |16.49 934 11.34 1094 1243 16.10 8.07 8.48 10.24 8.26 949 9.21 1098 10.50 | 10.85
PCN+Ray|13.63 8.25 10.79 9.74 11.10 1430 591 6.51 8.21 6.88 7.02 697 995 7.89 9.08
CRN |1343 985 793 8.67 1249 11.38 10.23 7.76 8.47 547 12.16 11.25 722 12.61 | 9.92
GRNet |10.36 7.75 7.50 7.74 11.21 10.74 9.11 7.52 7.18 853 946 8.62 7.64 9.76 8.79
MSN | 771 6.70 6.52 657 6.89 7.55 5.17 577 6.06 451 563 6.68 4.29 6.26 6.17
Ours 631 6.14 533 512 593 6.76 4.06 445 446 3.65 429 497 3.69 4.92 5.01

(a) Evaluation on EMD (x10°) with Res.=8,192
methods |faucet cabinet table chair vase lamp bottle clock display knife mug fridge scissors trashcan |average
PCN 4.17 4.67 3.82 4.01 631 3.73 375 4.67 415 1.82 593 465 2.33 533 4.24
PCN+Ray| 2.80 4.55 3.57 3.81 5.80 3.12 324 3.67 297 1.57 434 351 1.26 4.50 3.48
CRN | 3.67 4.49 3.44 3.81 549 3.19 335 432 400 1.64 558 452 2.06 5.08 3.90
GRNet | 3.28 4.66 3.73 394 553 352 451 477 4.08 203 6.17 499 2.15 5.37 4.20
MSN | 4.02 575 4.61 481 571 434 455 486 445 1.89 542 525 204 5.49 4.51
Ours 262 472 376 3.62 4.54 3.02 3.11 3.59 352 1.46 428 4.17 1.5l 4.48 3.46

(b) Evaluation on CD (x10?) with Res.=8,192

Table 4: Comparison with Existing Methods. Evaluation with Res.=8,192

methods |faucet cabinet table chair vase lamp bottle clock display knife mug fridge scissors trashcan |average
PCN 16.81 10.47 12.22 11.81 13.25 16.67 8.62 9.63 11.07 8.64 10.83 10.47 11.58 11.64 | 11.69
PCN+Ray |16.13 10.18 11.68 10.61 11.13 14.90 7.02 8.16 9.40 7.23 890 893 9.79 9.63 | 10.26
PF-Net |16.11 10.04 9.97 10.61 11.50 14.07 9.17 1096 9.55 10.04 10.21 10.55 11.02 9.79 | 10.97
P2P-Net [16.09 11.64 10.73 12.29 16.36 13.52 18.10 11.95 11.00 13.28 20.55 15.63 8.78 16.59 | 14.04
SoftPoolNet| 15.03 14.30 11.28 14.05 17.63 15.89 18.35 13.05 10.52 10.66 17.58 17.34 11.47 18.87 | 14.72
CRN 14.00 11.00 9.09 9.70 13.32 12.09 11.02 9.01 939 5.84 13.07 1241 7.69 13.18 | 10.77
GRNet |[11.30 9.16 8.61 8.82 12.27 11.28 998 8.83 824 9.07 11.06 991 7.70 11.12 | 9.81
MSN 852 8.19 782 782 836 851 643 741 7.14 492 784 828 494 8.29 7.46
Ours 689 748 6.63 6.63 7.16 7.48 553 6.19 6.02 4.44 6.67 687 4.00 7.04 6.36

(a) Evaluation on EMD (x10°) with Res.=2,048
methods |faucet cabinet table chair vase lamp bottle clock display knife mug fridge scissors trashcan |average
PCN 562 728 595 6.14 871 515 553 697 629 2.64 879 7.38 3.26 8.09 6.27
PCN+Ray | 435 7.14 5.19 598 7.19 4.61 445 6.14 523 235 721 633 217 7.28 5.40
PF-Net | 896 8.15 6.94 7.48 10.10 7.56 696 8.67 7.16 4.12 980 854 5.24 9.08 7.77
P2P-Net | 447 721 549 592 7.62 441 701 679 645 277 871 822 247 8.42 6.14
SoftPoolNet| 5.54 7.85 6.41 659 827 556 6.67 7.63 6.59 3.05 890 824 345 8.57 6.67
CRN 514 713 559 594 796 4.63 528 6.72 6.12 248 849 7.30 2.96 7.94 5.98
GRNet |4.72 721 577 6.00 790 492 6.24 7.06 6.17 2.89 886 7.62 3.03 8.14 6.18
MSN 525 8.06 6.50 6.70 7.92 566 6.16 7.01 636 2.67 816 7.62 2.88 8.07 6.36
Ours 390 7.01 565 561 6.68 426 492 588 555 225 7.19 673 234 7.13 5.36

(b) Evaluation on CD (x10?) with Res.=2,048

Table 5: Comparison with existing methods. Evaluation with Res.=2,048

resolution of §,192. We report the comparisons using EMD on EMD and CD are respectively listed in Table 5a and Ta-
[3] and CD scores [ 1] in Table 4a and Table 4b respectively. ble 5b.

For the other methods that do not support upsampling (in-

cluding PF-Net [2], P2P-Net[9], SoftPoolNet[6]), we down- 5.2. More Ablation Studies on Ray Encoding
sample the output of all the methods to the resolution of

2,048 to enable a fair comparison. The quantitative scores In our network, empty rays are feed into network to-

gether with real/coarse points. The most significant differ-



Category | only pts inrays remove Rfayg remove Rﬁayl noisy boundary MSN Ours
Faucet 6.54/2.61 7.88/4.34 6.88/2.82 6.94/2.90 7.71/4.02 6.31/2.62
Cabinet 6.35/4.72 6.55/5.52 6.72/5.02 6.71/4.99 6.70/5.75 6.14/4.72

Table 6.24/4.78 6.12/4.71 5.91/3.96 5.89/3.95 6.52/4.61 5.33/3.76
Chair 7.43/5.71 6.07/4.73 5.33/4.02 5.15/3.97 6.57/4.81 5.12/3.62
Vase 6.01/4.54 7.18/5.28 6.62/4.83 6.68/4.94 6.89/5.71 593/4.54
Lamp 7.14/2.95 8.71/4.19 7.30/3.23 7.21/3.27 7.55/4.34 6.76/3.02
Average 6.62/4.22 7.09/4.80 6.46 /3.98 6.43/4.00 6.99/4.87 5.93/3.71

Table 6: Ablation study on different of configurations (EMD / CD x10?)

ence between rays and points is that each ray has a direc-
tional vector and an offset vector to a neighboring point. In
encoder-decoder stage, the input rays are:

Rray = {{pk} Dk}, {ue}} € RMO (1)
While in the refining stage, we revisit the emptiness in-
formation by two set of rays:

Rgayl = {{pi}a {Dk}7 {Uk}} € RNCXKXQ. (2)
Ry = (P} ADE), (1)) € RYXI5 (3

We design an ablation study to explore the effectiveness
of directional vector and offset vector in ray representation.
In the ablated version, we remove Dy, vy, and r€ in ray rep-
resentation. As a result, the rays inputted to our network
only contains p§, or p’°. The quantitative results is shown
in Table 6 as ‘only pts in rays’. The results demonstrate
that Dy, vi and r€ are significant for our method to learn
emptiness.

In our paper, the first Rfayl informs our decoder with
the emptiness information, telling our decoder ‘whether the
coarse points are in empty regions’. The second Rgayg in-
forms our decoder with the shape information, telling our
decoder ‘what the real surface looks like’. To exam the ne-
cessity of the two rays in the refining stage, we design two
additional ablation studies: ‘remove ’Rfayz’ and ‘remove
R;Zlayl ”. The first one means the local feature vector is com-
puted only from Rfayl.
the local feature vector is computed only from Rfayz. The
quantitative results are shown in Table 6. The results prove

that both Rfayl and Rfaﬁ are important in refining stage.

Similarly, the second one means
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Figure 3: Comparisons of different methods on point cloud completion. Note that 8,192 points are exported from each
method for comparison, except SoftPoolNet (4,096 points) due to its network specification.



