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1. Network Architecture and Parameters
We provide the details of parameters and layer informa-

tion of our network in this section. It discusses the encoder
for R∗

ray, Rd
ray1 and Rd

ray1. The coarse decoder is adopted
from [3] and will not be covered here.

Emptiness R∗
ray Encoder Our approach takes a partial

point cloud Q and sampled rays R∗
ray as inputs and encodes

them into a global feature vector (GFV) with emptiness se-
mantics, which will be used to predict complete point cloud
with a coarse-to-fine strategy. The parameters for each layer
in our encoder is shown in Table 1. For vanilla MSN+ray,
we use the same encoder architecture as in Table 1.

Input Partial Points Q Ray Samples R∗
ray

3 MLPs 64, 128, 1024 64, 128, 1024
Max-pool 1024 1024

Concatenate 2048
Output Global Feature Vector g′

Table 1: Encoder of ME-PCN

Input Partial Points Q Ray Samples R∗
ray

2 MLPs 128, 256 128, 256
Max-pool

fi : 256
256 256

gi : 256Concatenate GFV g′: 512
Tile & Cat F̃ : |Q| × 768 G̃ :

∣∣R∗
ray

∣∣× 768

2 MLPs 512, 1024 512, 1024
Max-pool 1024 1024

Concatenate 2048
Output Global Feature Vector g∗

Table 2: PCN+ray R∗
ray Encoder

The core part of Feature Encoding (FE) layers is 3 sepa-
rate Multilayer Perceptron Layers (MLP), which transform
input points {qi|qi ∈ Q} or ray samples {r|r ∈ R∗

ray}
into point features. A point-wise max-pooling is respec-
tively performed on point features to obtain global features.

Lastly, global features are concatenated together to form a
single global feature vector.

PCN [10] has a deeper encoder by appending extra FE
layers to learn a more abstract and latent global feature. To
keep consistent with its original network, we construct an
encoder for PCN+ray as shown in Table 2.

It first concatenates the global feature g′ to each fi and gi
to obtain augmented point feature matrices F̃ and G̃ whose
rows are the concatenated feature vectors [fi, g′] and [gi, g

′].
Then, F̃ and G̃ are respectively passed through another two-
layer MLP followed by point-wise max-pooling (as the first
FE layer). The updated global feature vector g∗ is outputted
by concatenating the pooling results.

Emptiness Rd
ray1 and Rd

ray2 Encoder Rays Rd
ray1 and

Rd
ray2 are sampled using the coarse points Pc. The sampled

empty rays Rd
ray1 ∈ RNc×K×9 tell whether a coarse point

in Pc is in an ‘empty’ region while Rd
ray2 ∈ RNc×K×15

represents the boundaries of real shapes. For the sampling
method, we refer readers to our paper. In our experiments,
Nc = 8192 for our method and vanilla MSN+ray, and Nc =
1024 for PCN+ray. Both networks use the same emptiness
encoder for local feature extraction, as shown in Table 3.

Input Ray Samples Rd
ray1 Ray Samples Rd

ray2

3 MLPs 16, 32, 32 16, 32, 32
Grouping Nc × 32 Nc × 32

Concatenate Nc × 64
Output Local Feature Vector

Table 3: Local Emptiness Encoder for ray Rd
ray1 and Rd

ray2

Rays in Rd
ray1 represent empty space neighboring to

coarse points, while Rd
ray2 informs the coarse points with

the real shape boundary. Two FE layers are respectively
used to encode Rd

ray1 and Rd
ray2. Grouping operation is

a PointConv-style aggregation defined in [7]. We train the
entire network end-to-end with the loss function in Equa-
tion (10) of the paper with λ1 = 1.0 and λ2 = 0.1.
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Figure 1: Tests on real scans. From left to right: image and mask of the target object; input partial scan; predicted coarse
point cloud; predicted final point cloud from two different viewpoints. Note that blue points in (b),(f)/(c),(g) are sampled
from the empty rays Rray/R∗

ray. Green points in (c), (g) are sampled from real points.

2. Tests on Real Scans
We train our network with ShapeNet and test it on real

scans to investigate its generalization ability. Four real
scans are taken from [4] for the testing, where the 3D points
are back-projected from a single depth map and aligned to
a canonical system. The corresponding 2D masks are ex-
tracted from RGB images.

From the results in Figure 1, we can see that our method
can achieve plausible results ‘in the wild’. The ray feature
works quite well even though the depth scans are captured
by users without training.

3. Robustness of Encoding Emptiness
In real-world applications, the input point clouds are usu-

ally involved with background points. For such a scenario,
former works usually adopt a binary mask on the image
plane to filter background points [9, 4]. This kind of masks
can be directly used in our cases to learn emptiness. Since
the mask should be given for most methods in real applica-
tions, in this section, we would like to explore the robust-
ness of our method to imperfect masks. We simulate the
masks extracted from real-world depth/RGB data, and add
random segmentation errors (see Figure 2) to the boundaries
of masks. We fine-tune our model on all categories using the
noisy mask for 2 epochs. Test results are shown in Table 6.
From the results we can see that the performance measured
in both EMD and CD is only degraded slightly, which ver-
ifies the robustness of our method. It further demonstrates
that, for synthesized depth scans, we can obtain masks by
thresholding the depth maps; for real scans, we can use seg-
mentation methods to extract masks from RGB/RGBD im-
ages. For both cases, our method can deliver faithful results.

(a) Before (b) After

Figure 2: Adding noise to simulate the mask from real
world data: a) mask of chair back without noise; b) mask
with noises on boundaries.

4. More Qualitative Comparisons
We list more qualitative comparisons with previous

methods in Figure 3.

5. More Quantitative Comparisons
5.1. Comparison with Existing Methods

In this section, we report our quantitative evaluation on
all 14 categories: faucet, cabinet, table, chair, vase, lamp,
bottle, clock, display, knife, mug, fridge, scissors and trash-
can. Some methods (PCN [10], CRN [5], GR-Net [8], and
MSN [3]) support upsampling to recover higher resolution
of outputs, we compare our methods with them under the



methods faucet cabinet table chair vase lamp bottle clock display knife mug fridge scissors trashcan average
PCN 16.49 9.34 11.34 10.94 12.43 16.10 8.07 8.48 10.24 8.26 9.49 9.21 10.98 10.50 10.85

PCN+Ray 13.63 8.25 10.79 9.74 11.10 14.30 5.91 6.51 8.21 6.88 7.02 6.97 9.95 7.89 9.08
CRN 13.43 9.85 7.93 8.67 12.49 11.38 10.23 7.76 8.47 5.47 12.16 11.25 7.22 12.61 9.92

GRNet 10.36 7.75 7.50 7.74 11.21 10.74 9.11 7.52 7.18 8.53 9.46 8.62 7.64 9.76 8.79
MSN 7.71 6.70 6.52 6.57 6.89 7.55 5.17 5.77 6.06 4.51 5.63 6.68 4.29 6.26 6.17
Ours 6.31 6.14 5.33 5.12 5.93 6.76 4.06 4.45 4.46 3.65 4.29 4.97 3.69 4.92 5.01

(a) Evaluation on EMD (×102) with Res.=8,192
methods faucet cabinet table chair vase lamp bottle clock display knife mug fridge scissors trashcan average

PCN 4.17 4.67 3.82 4.01 6.31 3.73 3.75 4.67 4.15 1.82 5.93 4.65 2.33 5.33 4.24
PCN+Ray 2.80 4.55 3.57 3.81 5.80 3.12 3.24 3.67 2.97 1.57 4.34 3.51 1.26 4.50 3.48

CRN 3.67 4.49 3.44 3.81 5.49 3.19 3.35 4.32 4.00 1.64 5.58 4.52 2.06 5.08 3.90
GRNet 3.28 4.66 3.73 3.94 5.53 3.52 4.51 4.77 4.08 2.03 6.17 4.99 2.15 5.37 4.20
MSN 4.02 5.75 4.61 4.81 5.71 4.34 4.55 4.86 4.45 1.89 5.42 5.25 2.04 5.49 4.51
Ours 2.62 4.72 3.76 3.62 4.54 3.02 3.11 3.59 3.52 1.46 4.28 4.17 1.51 4.48 3.46

(b) Evaluation on CD (×102) with Res.=8,192

Table 4: Comparison with Existing Methods. Evaluation with Res.=8,192

methods faucet cabinet table chair vase lamp bottle clock display knife mug fridge scissors trashcan average
PCN 16.81 10.47 12.22 11.81 13.25 16.67 8.62 9.63 11.07 8.64 10.83 10.47 11.58 11.64 11.69

PCN+Ray 16.13 10.18 11.68 10.61 11.13 14.90 7.02 8.16 9.40 7.23 8.90 8.93 9.79 9.63 10.26
PF-Net 16.11 10.04 9.97 10.61 11.50 14.07 9.17 10.96 9.55 10.04 10.21 10.55 11.02 9.79 10.97

P2P-Net 16.09 11.64 10.73 12.29 16.36 13.52 18.10 11.95 11.00 13.28 20.55 15.63 8.78 16.59 14.04
SoftPoolNet 15.03 14.30 11.28 14.05 17.63 15.89 18.35 13.05 10.52 10.66 17.58 17.34 11.47 18.87 14.72

CRN 14.00 11.00 9.09 9.70 13.32 12.09 11.02 9.01 9.39 5.84 13.07 12.41 7.69 13.18 10.77
GRNet 11.30 9.16 8.61 8.82 12.27 11.28 9.98 8.83 8.24 9.07 11.06 9.91 7.70 11.12 9.81
MSN 8.52 8.19 7.82 7.82 8.36 8.51 6.43 7.41 7.14 4.92 7.84 8.28 4.94 8.29 7.46
Ours 6.89 7.48 6.63 6.63 7.16 7.48 5.53 6.19 6.02 4.44 6.67 6.87 4.00 7.04 6.36

(a) Evaluation on EMD (×102) with Res.=2,048
methods faucet cabinet table chair vase lamp bottle clock display knife mug fridge scissors trashcan average

PCN 5.62 7.28 5.95 6.14 8.71 5.15 5.53 6.97 6.29 2.64 8.79 7.38 3.26 8.09 6.27
PCN+Ray 4.35 7.14 5.19 5.98 7.19 4.61 4.45 6.14 5.23 2.35 7.21 6.33 2.17 7.28 5.40

PF-Net 8.96 8.15 6.94 7.48 10.10 7.56 6.96 8.67 7.16 4.12 9.80 8.54 5.24 9.08 7.77
P2P-Net 4.47 7.21 5.49 5.92 7.62 4.41 7.01 6.79 6.45 2.77 8.71 8.22 2.47 8.42 6.14

SoftPoolNet 5.54 7.85 6.41 6.59 8.27 5.56 6.67 7.63 6.59 3.05 8.90 8.24 3.45 8.57 6.67
CRN 5.14 7.13 5.59 5.94 7.96 4.63 5.28 6.72 6.12 2.48 8.49 7.30 2.96 7.94 5.98

GRNet 4.72 7.21 5.77 6.00 7.90 4.92 6.24 7.06 6.17 2.89 8.86 7.62 3.03 8.14 6.18
MSN 5.25 8.06 6.50 6.70 7.92 5.66 6.16 7.01 6.36 2.67 8.16 7.62 2.88 8.07 6.36
Ours 3.90 7.01 5.65 5.61 6.68 4.26 4.92 5.88 5.55 2.25 7.19 6.73 2.34 7.13 5.36

(b) Evaluation on CD (×102) with Res.=2,048

Table 5: Comparison with existing methods. Evaluation with Res.=2,048

resolution of 8,192. We report the comparisons using EMD
[3] and CD scores [1] in Table 4a and Table 4b respectively.
For the other methods that do not support upsampling (in-
cluding PF-Net [2], P2P-Net[9], SoftPoolNet[6]), we down-
sample the output of all the methods to the resolution of
2,048 to enable a fair comparison. The quantitative scores

on EMD and CD are respectively listed in Table 5a and Ta-
ble 5b.

5.2. More Ablation Studies on Ray Encoding

In our network, empty rays are feed into network to-
gether with real/coarse points. The most significant differ-



Category only pts in rays remove Rd
ray2 remove Rd

ray1 noisy boundary MSN Ours
Faucet 6.54 / 2.61 7.88 / 4.34 6.88 / 2.82 6.94 / 2.90 7.71 / 4.02 6.31 / 2.62
Cabinet 6.35 / 4.72 6.55 / 5.52 6.72 / 5.02 6.71 / 4.99 6.70 / 5.75 6.14 / 4.72
Table 6.24 / 4.78 6.12 / 4.71 5.91 / 3.96 5.89 / 3.95 6.52 / 4.61 5.33 / 3.76
Chair 7.43 / 5.71 6.07 / 4.73 5.33 / 4.02 5.15 / 3.97 6.57 / 4.81 5.12 / 3.62
Vase 6.01 / 4.54 7.18 / 5.28 6.62 / 4.83 6.68 / 4.94 6.89 / 5.71 5.93 / 4.54
Lamp 7.14 / 2.95 8.71 / 4.19 7.30 / 3.23 7.21 / 3.27 7.55 / 4.34 6.76 / 3.02

Average 6.62 / 4.22 7.09 / 4.80 6.46 / 3.98 6.43 / 4.00 6.99 / 4.87 5.93 / 3.71

Table 6: Ablation study on different of configurations (EMD / CD ×102)

ence between rays and points is that each ray has a direc-
tional vector and an offset vector to a neighboring point. In
encoder-decoder stage, the input rays are:

R∗
ray = {{pek}, {Dk}, {vk}} ∈ RM×K×9 (1)

While in the refining stage, we revisit the emptiness in-
formation by two set of rays:

Rd
ray1 = {{pek}, {Dk}, {vk}} ∈ RNc×K×9. (2)

Rd
ray2 = {{pc,ek }, {Dc

k}, {rc}} ∈ RNc×K×15 (3)

We design an ablation study to explore the effectiveness
of directional vector and offset vector in ray representation.
In the ablated version, we remove Dk, vk and rc in ray rep-
resentation. As a result, the rays inputted to our network
only contains pek or pc,ek . The quantitative results is shown
in Table 6 as ‘only pts in rays’. The results demonstrate
that Dk, vk and rc are significant for our method to learn
emptiness.

In our paper, the first Rd
ray1 informs our decoder with

the emptiness information, telling our decoder ‘whether the
coarse points are in empty regions’. The second Rd

ray2 in-
forms our decoder with the shape information, telling our
decoder ‘what the real surface looks like’. To exam the ne-
cessity of the two rays in the refining stage, we design two
additional ablation studies: ‘remove Rd

ray2’ and ‘remove
Rd

ray1’. The first one means the local feature vector is com-
puted only from Rd

ray1. Similarly, the second one means
the local feature vector is computed only from Rd

ray2. The
quantitative results are shown in Table 6. The results prove
that both Rd

ray1 and Rd
ray2 are important in refining stage.
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Figure 3: Comparisons of different methods on point cloud completion. Note that 8,192 points are exported from each
method for comparison, except SoftPoolNet (4,096 points) due to its network specification.


