
Supplement for “Searching for Two-Stream Models in Multivariate Space for
Video Recognition”

1. Details of Search Algorithm

1.1. Background of PARSEC

In this section, we illustrate the adopted search algorithm
PARSEC [2] in detail. Here we define a unique discrete ar-
chitecture as A, which is sampled from a prior distribution
P (A|ααα). Architecture parameters ααα denote the probabili-
ties of choosing different operations. The goal of PARSEC
is to optimize the the architecture parameter ααα, in order to
maximize the architecture accuracy. Concretely, for video
recognition where we have video samples X and labels y,
probabilistic NAS can be formulated as optimizing the con-
tinuous architecture parameters α via an empirical Bayes
Monte Carlo procedure [9]

P (y|X, ω, α) =
∫
P (y|X, ω,A)P (A|ααα)dA

≈ 1

K

∑
k

P (y|X, ω,Ak),
(1)

where ω denotes the model weights. The continu-
ous integral of data likelihood is approximated by sam-
pling K architectures and averaging the data likelihoods
from them. We can jointly optimize architecture pa-
rameters ααα and model weights ω by estimating gradients
∇α log P (y|X, ω,ααα) and ∇w log P (y|X, ω,ααα) through
the sampled architectures. Typically, the number of sam-
pled architectureK is set to 13, which is sufficient to search
for a good architecture empirically, according to our prelim-
inary experiments.

1.2. Cost-aware Search

Searching architecture without any efficiency constraint
always leads to heavy architectures, which is not expected.
Therefore, we further introduce an effective FLOPs con-
straint term C(ααα):

C(ααα) =

∫
cost(A)P (A|ααα)dα ≈ 1

K

∑
k

cost(Ak),

cost(Ak) = max(0,
F (Ak)

Tmax − 1
) + max(0, 1− F (Ak)

Tmin
),

(2)

72

73

74

75

76

77

78

79

0 200 400 600 800 1000 1200 1400

Auto-TSNet (Ours)

X3D

EfficientNet-3D
V
id

eo
 T

op
-1

 A
cc

ur
ac

y
(%

)

GFLOPs per video

Figure 1: Results of searched models on Kinetics-400.
We provide a zoom-in view of Figure 1 in our paper that
focusing on the comparison of searched models.

where [Tmin, Tmax] are the target architecture FLOPs
range. F (Ak) denotes the FLOPs of the sampled architec-
tureAk. The intuition here is to constraint the FLOPs of the
searched architecture into the target range.

Therefore, the final objective function of our architecture
search algorithm can be formulated as:

minL(ω,ααα) = −log P (y|X, ω,ααα) + β log C(ααα), (3)

where β is the coefficient of FLOPs constraint term.
In order to validate the effectiveness of the introduced

FLOPs constraint term, we conducted experiments with dif-
ferent coefficient β, as shown in Table 1. The architec-
ture is searched on Kinectics-100. We can observe that

Cost coefficient β Tmin (G) Tmax (G) Architecture GFLOPs

0 - - 2.76
0.05 1.37 1.43 1.93
0.1 1.37 1.43 1.56
0.2 1.37 1.43 1.39

Table 1: Architecture search with different FLOPs con-
straint settings.

the FLOPs of architecture is substantially larger than others
when β = 0. When the cost coefficient β becomes large, the

Search Part Epoch Learning Rate
model weights arch. param.

Sparse Stream 800 0.4 0.015
Dense Stream & Fusion Blocks 400 0.2 0.015

Attention Blocks 200 0.2 0.010

Table 2: Architecture search settings.

FLOPs of the searched architecture is gradually approach-
ing to the pre-defined threshold range [Tmin, Tmax].

2. Details of Searchable Two-Stream Fusion
Block

In this section, we elaborate more the design of the
fusion blocks we adopted in our search space. Inspired
by [5], we adopted four candidate fusion operations.
Here we define the feature map size of dense stream as
[CD, TD, H,W]. [CS , TS , H,W] for the sparse stream’s
feature map size. Each fusion operation will take the fea-
ture map from dense stream as input, and the output feature
will be fused with sparse stream’s feature map via summa-
tion.
Time-strided convolution. The temporal dimension of the
input dense feature map is reduced from TD to TS by a 3D
convolution, whose kernel size is 5× 12. Then a point-wise
convolution is applied to match the channel dimension to
CD.
Time-strided sampling. A uniform sampling is ap-
plied on temporal dimension, producing a feature map of
[CD, TS , H,W], followed by a point-wise convolution to
change the channel dimension from CD to CS .
Time-to-channel. This fusion operation simply reshape the
input feature to a feature of size [αCD, TS , H,W], where
α = TD/TS . An additional point-wise convolution is ap-
plied to match the channel dimension to CS .
Skip. There’s no fusion between the sparse and dense
stream if “skip” operation is chosen.

3. Implementation Details
3.1. Searching Setting

We summarize the searching epoch and learning rate set-
tings during architecture search in Table 2. Model weights
are optimized using SGD optimizer and architecture param-
eters are optimized with Adam optimizer. We use momen-
tum of 0.9, weight decay of 5e − 5 for the SGD optimizer
and weight decay of 0 for the Adam optimizer. Dropout of
0.5 is used before the final classifier. Specifically, for the
search of each part, we use the first 25% epochs to warm up
the supernet, i.e., freezing the architecture parameters and
only updating the model weights. We set mini-batch size to
8 per GPU with 32 GPUs, which means the total batch size
is 256.

Model
Training

Scale Jittering
Range

Crop Size

Training Evaluation
Center LCR

Auto-TSNet-S [182, 228] 160 160 182
Auto-TSNet-M [256, 320] 224 224 256
Auto-TSNet-L [356, 446] 312 312 356

Table 3: The data processing for Auto-TSNet mod-
els. Here Center and LCR denotes the 10-Center and 10-
LeftCenterRight evaluation methods mentioned in our pa-
per.

3.2. Training Setting

We adopt the open-source ClassyVision [1] for train-
ing, which is a PyTorch framework for video classification.
Models are initialized with He initialization [7]. We use a
SGD optimizer and set learning rate to 0.4 with a sched-
ule of half-period cosine decaying [8]. A linear warm-up
strategy [6] is also adopted for the first 34 epochs. We train
a model for a total of 300 epochs (256 epochs for Auto-
TSNet-L). The mini-batchsize is 8 clips per GPU with 32
GPUs, where the total batch size is set to 256. The dropout
rate is set to 0.5 at the network head. We also apply Au-
toAugment [3] on each frame of input video clip. The
data processing details are presented in Table 3, where each
frame of the input video is obtained with a scale jittering
followed by a random crop of a specified size.

3.3. Model Evaluation Setting

As illustrated in our paper, we use 10-Center and 10-
LeftCenterRight evaluation methods to obtain our results.
The evaluation crop sizes of Auto-TSNet models for both
evaluation methods are shown in Table 3.

4. Model Complexity Benchmark

We also benchmark the the model complexity (Params,
FLOPs & latency) and performance in Table. 4, for a bet-
ter comparison with current SOTA model X3D [4]. The
latency is bench-marked on a single NVIDIA A100 GPU
with 500 repeat testing. We could observe that the pro-
posed Auto-TSNet has comparable run-time latency com-
pared with X3D, while surpassing it on the accuracy with a
significant margin.

5. Random Search

We randomly sample 16 distinct architectures in our
search space under the constraint that the 1-view GFLOPS
is between 2.4G and 2.5G. They are trained from scratch
on Kinetics-400, and the results are shown in Figure. 2.
Our searched Auto-TSNet-S model substantially outper-
forms randomly sampled architectures.

Model Params Total Total Top-1
(M) Latency (s) GFLOPs Acc (%)

X3D-S [4] 3.8 0.816 81 73.3
Auto-TSNet-S†(ours) 7.7 1.023 84 74.6
Auto-TSNet-S (ours) 8.6 1.206 102 75.4

X3D-M [4] 3.8 1.107 186 76.0
Auto-TSNet-M†(ours) 7.7 1.020 156 76.6
Auto-TSNet-M (ours) 8.6 1.215 183 77.3

X3D-L [4] 6.1 2.190 744 77.5
Auto-TSNet-L†(ours) 12.2 1.935 543 78.3
Auto-TSNet-L (ours) 13.2 2.133 597 78.9

Table 4: Additional comparisons with other NAS mod-
els on Kinetics-400. Auto-TSNet and X3D models are
evaluated using 10-LeftCenterRight (30 views in total) test-
ing. The latency and FLOPs reported in the table are calcu-
lated using 30 views. † denotes the model without attention
blocks.

Figure 2: Comparisons with random sampled architec-
tures on Kinetics-400.

References
[1] A. Adcock, V. Reis, M. Singh, Z. Yan, van der Maaten L.,

K. Zhang, S. Motwani, J. Guerin, N. Goyal, I. Misra, L.
Gustafson, C. Changhan, and P. Goyal. Classy vision. 2019.
2

[2] Francesco Paolo Casale, Jonathan Gordon, and Nicolo Fusi.
Probabilistic neural architecture search. arXiv preprint
arXiv:1902.05116, 2019. 1

[3] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
policies from data. arXiv preprint arXiv:1805.09501, 2018. 2

[4] Christoph Feichtenhofer. X3d: Expanding architectures for
efficient video recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 203–213, 2020. 2, 3

[5] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 6202–6211, 2019. 2

[6] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017. 2

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–
1034, 2015. 2

[8] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. arXiv preprint arXiv:1608.03983,
2016. 2

[9] Carl Edward Rasmussen and Zoubin Ghahramani. Bayesian
monte carlo. Advances in neural information processing sys-
tems, pages 505–512, 2003. 1

