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In this supplementary, we provide additional information
for,

S1 detailed framework structure and implementation of
our approach,

S2 more detailed information about the datasets involved
in experiments,

S3 experimental results when having more than two
source domains,

S4 more experimental results and additional visualization
results for semantic segmentation.

S1. Framework Structure and Implementation
In Sec. 3 and Fig. 2 of the main paper, we introduce our

approach to mDALU problem, and here we provide more
detailed structure and implementation of our approach. The
overview of our approach is shown in Fig. S1. In the
image classification experiment, the hyperparameter λ in
Eq. (10) of the main paper is set as 1.0, and δ in Eq. (12)
and Eq. (13) of the main paper is set as 0.5. The images are
resized to 32× 32. We use the the Adam optimizer [8] with
β1 = 0.9, β2 = 0.999 and the weight decay as 5 × 10−4.
The learning rate is set as 2 × 10−4. We adopt the same
network architecture as that of the digits classification ex-
periments in [12]. In the 2D semantic image segmentation
experiments, the hyperparameter λ in Eq. (10) of the main
paper is set as 0.001, and δ in Eq. (12) and Eq. (13) of the
main paper is set as 0.2, 0.5 and 0.4 for SYNTHIA, GTA5
and Cityscapes dataset, respectively. The images are resized
to 1024 × 512. We use the SGD optimizer for training the
semantic segmentation network, whose momentum is 0.9,
weight decay is 5 × 10−4 and learning rate is 2.5 × 10−4

with polynomial decay of power 0.9. Meanwhile, the Adam
optimizer is used for training the discriminator network,
whose momentum is β1 = 0.9, β2 = 0.99, weight decay
is 5 × 10−4 and learning rate is 1 × 10−4 with polynomial
decay of power 0.9. We adopt the same semantic segmenta-
tion and discriminator network architecture as that of [16].

In the cross-modal semantic segmentation experiments, we
follow the exactly same data augmentation and preprocess
procedure as that of [7]. The hyperparameter δ in Eq. (12)
and Eq. (13) of the main paper is set as 0.2. We use the
Adam optimizer for training the 2D and 3D semantic seg-
mentation network, with β1 = 0.9, β2 = 0.999. The learn-
ing rate is set as 1× 10−3.

S2. Datasets Overview of mDALU Benchmark

In Sec. 4 of the main paper, we introduce the bench-
mark setup of the mDALU problem. Here we provide more
details about the datasets involved in the benchmark.

S2.1. Image Classification

In the image classification benchmark of the main pa-
per, we adopt three digits datasets, including MNIST [9],
Synthetic Digits [3], and SVHN [11] dataset. MNIST is a
hand-written numbers image dataset, SVHN is a street view
house numbers image dataset and Synthetic Digits is a syn-
thetic numbers image dataset. In the image classification
benchmark of the main paper, we adopt these three different
style digits images, to introduce larger domain gap between
different source domains to effectively evaluate the validity
of different methods for mDALU problem. In Sec. S3, we
introduce two more datasets, MNIST-M [3] and USPS [6] ,
to evaluate the effectiveness of our approach when dealing
with more than two source domains. MNIST-M is a syn-
thetic numbers image dataset, and USPS is a hand-written
numbers image dataset. We follow the setup of splitting the
dataset in [12, 13]. In each of MNIST, MNIST-M, SVHN
and Synthetic Digits, 25000 images for training are sampled
from the training subset, and 9000 images for testing are
sampled from the testing subset. And for the USPS dataset,
due to there are only 9298 images in total are available, the
whole training set covering 7438 images is used for train-
ing, while the whole testing set with 1860 images is adopted
for testing. MNIST, MNIST-M, SVHN, Synthetic Digits,
USPS are abbreviated as MT, MM, SVHN, SYN, and UP,
respectively. The detailed label space of different source



(a) Partially-Supervised Adaptation (b) Fully-Supervised Adaptation
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Figure S1: Overview of our approach to mDALU problem. Our approach is composed of two stages: (a) partially-supervised
adaptation stage, and (b) fully-supervised adaptation stage. In the partially-supervised adaptation stage, there are three
modules involved, the domain attention (DAT) module, the uncertainty maximization (UM) module, and the attention-guided
adversarial alignment (A3) module. Besides the supervised semantic segmentation loss Lpsu on the source domain, the DAT
module is trained in the supervised way with Latt, the UM module is trained in the supervised way with Lum and the A3

module is trained in the adversarial way with La3 + Ld. In the fully-supervised adaptation stage, in order to complete the
label space, the pseudo-label, for all the samples xs1 , xs2 , xt from all related domains, is generated by fusing the probability
map weighted by attention map from different branches, G1,M1 and G2,M2. Then the semantic segmentation network
G is trained in the complete and unified label space with the generated pseudo-label and the supervised loss Lfsa. In the
implementation, G1, G2,M1,M2 share the same encoder and adopt different label predictors.

(a) MT (b) SYN (c) SVHN (d) MM (d) UP

Figure S2: Example images of different datasets in mDALU
image classification benchmark.

domains and the target domain under different experiments
setup is listed in Table S1 and Table S2. The example im-
ages of different datasets are shown in Fig. S2.

S2.2. 2D Semantic Image Segmentation

In the 2D semantic image segmentation benchmark of
the main paper, we adopt the synthetic image datasets,
GTA5 [14] and SYNTHIA [15] and the real image dataset,
Cityscapes [2]. We introduce the label space of different
datasets in the main paper. Here we provide more additional
information about the datasets.

Cityscapes. Cityscapes is a dataset composed of the
street scene images collected from different European
cities. We use the training set of Cityscapes covering 2993
images, without the label information, as the target domain
during the training stage. And we adopt the validation set of
Cityscapes, which are composed of 500 images and densely
labeled with 19 classes, to evaluate the semantic segmenta-
tion performance of the model on the target domain.

GTA5. GTA5 is a synthetic urban scene image dataset,
whose images are rendered from the game engine. The
scene of the images is based on the city of Los Angeles.
In our 2D semantic image segmentation benchmark, we use
24966 densely labeled images in the GTA5 dataset as one
of our source domains, whose annotation is compatible with
that of Cityscapes.

SYNTHIA. SYNTHIA is a synthetic dataset, contain-
ing photo-realistic images rendered from a virtual city. We
use the SYNTHIA-RAND-Cityscapes subset, which con-
tains 9400 densely labeled images and the 16 class annota-
tion of which is compatible with that of Cityscapes. In our
2D semantic image segmentation benchmark, the labeled
SYNTHIA dataset serves as one of our source domains.

S2.3. Cross-Modal Semantic Segmentation

In the cross-modal semantic segmentation benchmark of
the main paper, three datasets are involved, Cityscapes [2],
Nuscenes [1] and A2D2 [5]. We introduce the label space
of different datasets in the main paper. Here we provide
more information on the datasets and the mapping between
our label space and the annotated class label in different
datasets.

Cityscapes. Cityscapes [2] is a 2D urban scene image
dataset, and has been introduced in the Sec. S2.2. In the
cross-modal semantic segmentation benchmark, we adopt
the training set of Cityscapes, covering 2975 images, as the



Experiment Label Space

Non-Overlapping(Table 2 in main paper)
Domain Source1 Source2 Target Source1 Source2 Target Source1 Source2 Target
Dataset SVHN SYN MT MT SVHN SYN MNIST SYN SVHN
Class 0∼4 5∼9 0∼9 0∼4 5∼9 0∼9 0∼4 5∼9 0∼9

Partially-Overlapping(Table 4 in main paper)
Domain Source1 Source2 Target Source1 Source2 Target Source1 Source2 Target
Dataset SVHN SYN MT MT SVHN SYN MNIST SYN SVHN
Class 0∼6 3∼9 0∼9 0∼6 3∼9 0∼9 0∼6 3∼9 0∼9

Table S1: The label space of different source domains and the target domain in the mDALU image classification benchmark
of the main paper.

More Source Domains Experiments (Table S5 in supplementary)
Domain Source1 Source2 Source3 Source4 Target
Dataset SVHN SYN MM UP MT
Class 0∼2 2∼4 4∼6 7∼9 0∼9

Dataset MT SYN MM UP SVHN
Class 0∼2 2∼4 4∼6 7∼9 0∼9

Dataset MT SVHN MM UP SYN
Class 0∼2 2∼4 4∼6 7∼9 0∼9

Dataset MT SVHN SYN UP MM
Class 0∼2 2∼4 4∼6 7∼9 0∼9

Dataset MT SVHN SYN MM UP
Class 0∼2 2∼4 4∼6 7∼9 0∼9

Table S2: The label space of different source domains and the target domain in the mDALU image classification benchmark
of the more source domains experiments in the supplementary.

2D source domain. Unlike the Sec. S2.2 does not use the
label information of Cityscapes training images, we use the
ground truth label of Cityscapes training images, but the
label space of Cityscapes in our experiments only covers 6
classes, road, sidewalk, building, pole, sign and nature. The
mapping from the original Cityscapes annotated classes and
our label space is listed in Table S4.

Nuscenes. Nuscenes [1] is an autonomous driving
dataset covering 1000 driving scenes, which are collected
from the Boston and Singapore. Each scene, of 20-second
length, is sampled and annotated at 2HZ, resulting in 40K
well-annotated keyframes for 3D bounding boxes of the ob-
jects. In our cross-modal semantic segmentation bench-
mark, we adopt the training set of the Nuscenes, including
28130 keyframes 3D LiDAR points, as the 3D source do-
main. Then as done in [7], we generate the 3D point-wise
semantic labels from the 3D bounding boxes, by assign-
ing the object label to the points inside the bounding box
and taking the points outside the bounding box as unlabeled
points. The label space of the 3D source domain includes 4
classes, person, car, truck and bike. The mapping between
the object label annotation in Nuscenes and our label space
is reported in Table S4.

A2D2. A2D2 [5] is an autonomous driving dataset, in-
cluding simultaneously recorded paired 2D images and 3D
LiDAR points. The A2D2 covers 20 scenes, which are cor-

(a) Source (c) DCTN(b) DANN

(d) M3SDA (e) AENT (f) Ours

Figure S3: t-SNE Visualization of the feature embedding on
the mDALU image classification benchmark, MT, SVHN,
MM, UP→ SYN. We adopt the same t-SNE parameters for
all visualization.

responding to 28637 frames for training. And the scene
20180807 145028 is used for validation. The 2D images
are densely labeled with 38 semantic classes. Following [7],
the 3D point-wise semantic labels are generated by the re-
projection to the 2D images. In our cross-modal semantic
segmentation benchmark, the A2D2 serves as the target do-
main. We use the training set of A2D2 without the label
information during training, including the paired 2D im-
ages and 3D LiDAR points. And we use the validation set
20180807 145028 with the ground truth label for evaluat-
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Ours (PSF w/o relabeling) 11.5 17.8 33.6 47.7 13.2 7.2 43.4 38.4
Ours (PSF w/ relabeling) 13.3 17.9 30.6 53.7 18.2 19.8 43.2 40.0

Table S3: Quantitative comparison of w/ and w/o relabeling
inconsistent taxonomies in PSF module. The detailed per-
formance on inconsistent taxonomies classes is also shown.
The mIoU is reported for 19 classes. The best results are
denoted in bold.

ing the performance. The label space of the target domain
for evaluation includes 10 classes, road, sidewalk, building,
pole, sign, nature, person, car, truck and bike. The map-
ping between the label space and the annotated 38 semantic
classses in A2D2 is shown in Table S4.

S3. Experiments with More Source Domains

In this section, we evaluate the effectiveness of our ap-
proach when dealing with more than two source domains.
Based on the classification benchmark of the main paper,
we here introduce two more datasets, MNIST-M [3] and
USPS [6], which are abbreviated as “MM” and “UP” re-
spectively. Then as done in the main paper, each time, one
of “MT”, “SYN”, “SVHN”, “’MM’ and “UP” is taken as
the target domain, while the other four are used as source
domains. The label space of different source domains in the
experiments is listed in Table S2.

Experimental results. In Table S5, we report the quan-
titative experimental results of the classification benchmark,
after introducing two more datasets, MM and UP. It can be
seen that our approach with the “partially-supervised adap-
tation” stage highly outperforms the source-only baseline,
the adaptation-based methods DANN, DCTN, and M3SDA,
and the label-unification based method AENT. It achieves
an average accuracy of 80.83% on the target domain. Then
by exploiting the “fully-supervised adaptation” stage, the
performance is further improved to 82.88%. It proves the
effectiveness and the robustness of our approach for ad-
dressing the mDALU problem when more than two source
domains are given. In Fig. S3, the qualitative comparison of
feature embedding, t-SNE visualization [10], between our
approach and other methods is shown. It shows that our
approach is able to learn more discriminative features than
other methods. It further verifies the good performance of
our approach to mDALU problem.

S4. More Experimental Results for Semantic
Segmentation

Detailed experimental results for semantic segmenta-
tion. In Table 5a and Table 8 of the main paper, we show the
quantitative comparison, through the mIoU, between our

approach and other methods, on the 2D and cross-modal se-
mantic segmentation benchmark. Correspondingly, we here
provide more detailed experimental results in Table S6 and
Table S7, covering the per-class IoU results.

Attention visualization for semantic segmentation.
During the “partially-supervised adaptation” stage, we in-
troduce the attention map in the domain attention (DAT)
module, the attention-guided adversarial alignment (A3)
module and the inference via attention-guided fusion. In
order to verify the effectiveness of our attention map predic-
tion, we show the qualitative visualization of the attention
map on the target domain images in Fig. S4. Correspond-
ing to the Sec. 3.2.1 of the main paper, the attention map ãt1
and ãt2, are generated by feeding the target domain image
xt into the attention network M1 and M2. It is shown that
our predicted attention map ãt1, corresponding to the source
domain S1, has higher attention value, for the objects be-
longing to the partial label space C1, such as the road, side-
walk, building, vegetation, sky and car. And the predicted
attention map ãt2, corresponding to the source domain S2,
has higher attention value, for the objects belonging to the
partial label space C2, such as the fence, pole, light, sign,
bus, motorcycle and bicycle. It proves the validity of our
attention map prediction.

Additional qualitative results for semantic segmenta-
tion. In Fig. 4 of the main paper, we show the qualitative
comparison results between our approach and other meth-
ods on the 2D semantic image segmentation benchmark,
and the source domain images are not translated with Cy-
cleGAN [20], i.e., the “NT” setting. Here we provide addi-
tional qualitative comparison results between our approach
and other methods on the 2D semantic image segmentation
benchmark, and the source images are translated with Cy-
cleGAN [20], i.e., the “T” setting. As shown in Fig. S5, it
can be seen that our approach obviously outperforms other
methods on the 2D semantic image segmentation bench-
mark. It further verifies the effectiveness of our approach
to mDALU problem.

Comparison between w/ and w/o relabeling inconsis-
tent taxonomies in the source domain. In Sec. 3.2.6 of
the main paper, we introduce the extension of our method
for inconsistent taxonomies. In the PSF module, besides the
unlabeled samples in the source domain being completed
with the predicted pseudo-label as in Eq. (12), we add
Eq. (17) to relabel the conflict part cqp ∩ cnm in the source
domain Sm. In Table 7 of the main paper, we show the
performance of our extended method 40.0% under incon-
sistent taxonomies setting, which outperforms other com-
peting methods significantly and proves the effectiveness of
our extended method for inconsistent taxonomies. Here, we
compare the ablation of our extended method, w/o relabel-
ing inconsistent taxonomies in the source domain, against
our full extended method, to further verify the effectiveness



label space A2D2 Cityscapes Nuscenes

road
‘rd normal street’, ‘zebra crossing’, ‘solid line’, ‘rd restricted area’, ‘slow drive area’,

‘drivable cobblestone’, ‘dashed line’, ‘painted driv. instr.’ ‘road’ –

sidewalk ‘sidewalk’, ‘curbstone’ ‘sidewalk’ –
building ‘buildings’ ‘building’ –

pole ‘poles’ ‘pole’ –
sign ‘traffic sign 1’, ‘traffic sign 2’, ‘traffic sign 3’ ‘traffic sign’ –

nature ‘nature object’ ‘vegetation’, ‘terrain’ –
person ‘pedestrian 1’, ‘pedestrian 2’, ‘pedestrian 3’ – ‘pedestrian’

car ‘car 1’, ‘car 2’, ‘car 3’, ‘car 4’, ‘ego car’ – ‘car’
truck ‘truck 1’, ‘truck 2’, ‘truck 3’ – ‘truck’

bike
‘bicycle 1’, ‘bicycle 2’, ‘bicycle 3’, ‘bicycle 4’,

‘small vehicles 1’, ‘small vehicles 2’, ‘small vehicles 3’ – ‘motorcycle’, ‘bicycle’

Table S4: Class mapping between the label space and the annotated classes in different datasets.

Method MT SYN SVHN MM UP Avg
Source 86.90 ± 0.40 63.80 ± 0.15 51.84 ± 2.13 52.09 ± 0.69 91.83 ± 0.78 69.29 ± 0.83

DANN[4] 86.38 ± 1.44 63.76 ± 0.88 51.58 ± 2.27 52.14 ± 0.61 89.98 ± 1.42 68.77 ± 1.32
DCTN [18] 63.87 ± 0.10 53.33 ± 1.15 43.57 ± 0.98 40.23 ± 0.48 59.78 ± 1.19 52.16 ± 0.78

M3SDA [12] 87.26 ± 1.54 63.40 ± 0.32 48.96 ± 0.92 52.28 ± 1.60 90.20 ± 0.97 68.42 ± 1.07
AENT[19] 79.55 ± 2.40 63.22 ± 0.41 52.58 ± 2.27 48.65 ± 0.31 87.62 ± 1.36 66.32 ± 1.35

Ours w/o PSF 94.90±0.23 78.37±0.58 72.18±0.44 63.01±0.74 95.70±0.44 80.83±0.49
Ours 96.60±0.07 80.68±0.30 73.82±0.35 66.62±0.62 96.70 ± 0.22 82.88±0.31

Table S5: Quantitative comparison between our method and other SOTA methods, under mDALU image classification
benchmark with 4 source domains. “MT”, “SYN”, “SVHN”, “MM”, and “UP” represent the target domain. We implement
AENT on classification by utilizing the ambiguity cross entropy loss proposed in [19]. The best results are denoted in bold.

of relabeling inconsistent taxonomies as in Eq. (17). From
Table S3, it is shown that the performance is improved by
1.6% from 38.4% to 40.0%, by relabeling inconsistent tax-
onomies in the source domain. And the detailed perfor-
mance comparison on the inconsistent taxonomies classes
in Table S3 also proves the effectiveness of relabeling in-
consistent taxonomies in the source domain.
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mIoU

NT

Source 3.0 10.1 42.1 7.3 6.6 10.6 18.2 31.2 61.3 3.9 73.2 27.5 16.2 9.9 1.4 1.6 0.0 8.6 3.8 17.7
AdaptSegNet[16] 0.1 0.0 1.4 4.0 6.6 5.4 14.6 22.8 5.9 1.9 35.9 1.3 18.0 0.6 3.0 1.8 0.7 13.0 9.4 7.7

MinEnt[17] 32.0 10.0 73.0 15.4 18.1 20.5 29.5 19.9 75.3 3.9 79.6 51.3 18.7 18.5 4.3 4.8 9.2 20.3 10.3 27.1
Advent[17] 6.3 1.0 27.7 4.5 6.3 6.5 16.9 19.3 16.7 2.0 40.6 6.8 17.1 7.7 3.7 6.6 1.2 15.0 18.5 11.8

Ours (w/o PSF) 82.8 30.8 78.9 17.5 15.8 28.0 34.8 18.9 79.1 10.5 78.4 52.0 18.2 71.4 16.8 34.3 2.0 11.0 8.0 36.3
Ours (ADV) 82.1 35.2 78.1 27.3 18.8 29.6 33.0 21.1 78.3 36.9 75.3 58.9 25.0 69.6 19.3 33.8 0.0 15.6 22.9 40.1
Ours (PSF) 77.8 31.9 79.5 17.9 18.1 29.0 34.9 20.9 80.2 9.0 79.6 55.6 20.9 74.4 16.9 25.5 0.0 17.0 18.9 37.3

Ours (ADV+PSF) 81.7 34.1 79.5 26.7 19.4 29.0 32.0 23.2 82.3 31.4 79.5 57.5 22.3 66.6 26.8 40.2 0.0 19.4 20.4 40.6

T

Source 28.7 9.5 52.3 11.1 10.0 9.5 16.4 30.6 55.9 2.7 67.5 40.8 21.1 38.7 6.9 4.3 6.4 22.1 20.6 24.0
AdaptSegNet[16] 78.3 34.5 75.7 16.2 15.6 11.5 19.0 10.8 78.0 16.5 76.3 42.6 8.4 59.6 10.9 8.8 0.5 14.2 8.7 30.8

MinEnt[17] 58.5 20.6 70.5 12.0 17.9 18.3 19.9 27.1 74.3 8.0 79.1 46.5 20.5 37.7 9.1 20.4 2.8 18.9 10.6 30.1
Advent[17] 78.0 34.3 75.9 14.5 5.8 9.8 17.2 10.2 76.4 15.0 76.9 40.6 3.1 61.3 19.3 14.5 0.0 9.9 12.5 30.3

Ours(w/o PSF) 86.0 40.8 79.1 13.2 22.7 33.5 33.3 18.9 79.9 33.2 72.0 49.7 19.1 63.3 20.6 10.1 0.0 13.4 34.0 38.1
Ours (ADV) 86.2 41.3 81.6 21.1 23.3 33.4 32.0 20.6 81.0 32.1 79.8 57.5 26.4 70.5 24.8 31.4 0.2 18.3 27.1 41.5
Ours (PSF) 87.8 42.9 81.2 17.3 22.0 34.1 36.9 17.9 82.2 34.2 73.6 58.9 25.1 76.5 24.4 28.9 0.1 19.8 41.9 42.4

Ours (PSF+ADV) 86.8 42.5 82.5 23.0 23.1 34.4 36.3 29.1 82.9 34.3 76.5 56.5 24.1 75.5 23.6 17.3 0.3 22.0 41.6 42.8

Table S6: Per-Class IoU on the mDALU 2D semantic image segmentation benchmark. “NT” means source domain images
are not translated with CycleGAN, and “T” means source domain images are translated with CycleGAN. The mIoU results
are reported over 19 classes. The best results are denoted in bold.
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2D

Sources 83.1 48.7 85.0 34.8 36.1 87.0 0.0 0.0 0.0 0.0 37.5
xMUDA 68.2 13.8 22.3 22.1 15.7 3.6 0.1 15.9 1.6 0.0 16.3

ES + MinEnt 55.7 15.6 64.9 19.8 21.7 45.2 0.0 0.0 0.0 0.0 22.3
ES + KL 14.4 20.0 74.2 15.3 36.6 46.2 0.0 9.3 1.5 0.0 21.7

xMUDA + AKL 44.8 29.7 46.5 36.2 33.6 61.4 0.0 21.0 1.8 0.0 27.5
xMUDA + AKL + COMP 70.3 38.1 76.4 25.0 30.5 80.8 0.0 0.0 0.0 0.0 32.1

Ours (w/o PSF) 85.8 54.3 81.8 34.1 40.8 81.4 0.0 0.0 2.8 0.0 38.1
Ours 92.8 59.9 90.0 30.4 60.7 90.6 13.8 71.6 39.1 0.4 54.9

3D

Source 0.0 0.0 0.0 0.0 0.0 0.0 2.1 16.1 1.4 0.0 2.0
xMUDA 0.0 0.0 0.0 0.0 0.0 0.0 1.2 14.6 1.5 0.0 1.7

ES + MinEnt 0.0 0.0 0.0 0.0 0.0 0.0 1.9 12.0 1.5 0.0 1.5
ES + KL 0.0 0.0 0.0 0.0 0.0 0.0 1.9 9.8 1.8 1.2 1.5

xMUDA + AKL 0.0 0.0 0.0 0.0 0.0 0.0 2.4 18.5 1.3 0.4 2.3
xMUDA + AKL + COMP 6.1 1.8 0.0 0.0 0.0 0.0 2.1 17.9 1.3 0.0 2.9

Ours (w/o PSF) 0.6 0.7 0.3 0.0 0.0 2.4 1.3 16.1 2.3 0.0 2.4
Ours 82.0 27.7 80.3 1.4 7.5 80.8 7.2 54.9 25.6 3.5 37.1

Fuse

Source 85.5 51.8 83.8 41.8 40.2 83.8 6.3 23.0 8.8 0.0 42.5
xMUDA 55.8 2.2 2.8 3.5 2.8 0.2 2.7 19.4 1.7 0.0 9.1

ES + MinEnt 63.1 7.5 69.7 9.0 13.8 30.2 2.6 11.0 1.2 0.0 20.8
ES + KL 10.6 21.2 65.0 18.2 26.8 34.7 5.4 12.0 2.4 0.3 19.7

xMUDA + AKL 13.2 36.9 20.1 34.1 31.1 44.5 4.6 24.8 1.7 0.1 21.1
xMUDA + AKL + COMP 74.1 43.5 74.4 35.2 35.5 71.0 4.1 34.7 5.0 0.0 37.7

Ours(w/o PSF) 91.1 57.3 85.7 39.7 47.4 85.9 8.6 57.8 25.3 0.4 49.9
Ours 91.7 58.6 90.1 34.5 58.8 90.3 15.4 72.4 43.6 1.3 55.7

Table S7: Per-Class IoU on the mDALU cross-modal semantic segmentation benchmark. The mIoU results are reported over
10 classes. The best results are denoted in bold.



(a) Cityscapes (b) Attention1 (c) Attention2 (a) Cityscapes (b) Attention1 (c) Attention2

Figure S4: Visualization of the attention map ãt1 and ãt2 of the target domain images. (a) is the Cityscapes image xt. (b) is
the attention map ãt1, generated by feeding the xt into the attention network M1. (c) is the attention map ãt2, generated by
feeding the xt into the attention network M2. Red parts are the parts with higher attention value, while the blue parts with
lower attention value.

Figure S5: Qualitative comparison of semantic segmentation results, under the mDALU 2D semantic image segmentation
benchmark, SYNTHIA + GTA5→ Cityscapes. The source images are translated with CycleGAN, i.e., setting “T”.
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