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In this supplementary, we provide additional information
for,

S1 detailed framework structure and implementation of
our approach,

S2 more detailed information about the datasets involved
in experiments,

S3 experimental results when having more than two
source domains,

S4 more experimental results and additional visualization
results for semantic segmentation.

S1. Framework Structure and Implementation

In Sec. 3 and Fig. 2 of the main paper, we introduce our
approach to mDALU problem, and here we provide more
detailed structure and implementation of our approach. The
overview of our approach is shown in Fig. S1. In the
image classification experiment, the hyperparameter A in
Eq. (10) of the main paper is set as 1.0, and ¢ in Eq. (12)
and Eq. (13) of the main paper is set as 0.5. The images are
resized to 32 x 32. We use the the Adam optimizer [8] with
B1 = 0.9, B2 = 0.999 and the weight decay as 5 x 1074,
The learning rate is set as 2 x 10~4. We adopt the same
network architecture as that of the digits classification ex-
periments in [12]. In the 2D semantic image segmentation
experiments, the hyperparameter A in Eq. (10) of the main
paper is set as 0.001, and ¢ in Eq. (12) and Eq. (13) of the
main paper is set as 0.2, 0.5 and 0.4 for SYNTHIA, GTAS
and Cityscapes dataset, respectively. The images are resized
to 1024 x 512. We use the SGD optimizer for training the
semantic segmentation network, whose momentum is 0.9,
weight decay is 5 x 10~* and learning rate is 2.5 x 10~*
with polynomial decay of power 0.9. Meanwhile, the Adam
optimizer is used for training the discriminator network,
whose momentum is 81 = 0.9, 82 = 0.99, weight decay
is 5 x 10~ and learning rate is 1 x 10~* with polynomial
decay of power 0.9. We adopt the same semantic segmenta-
tion and discriminator network architecture as that of [16].

In the cross-modal semantic segmentation experiments, we
follow the exactly same data augmentation and preprocess
procedure as that of [7]. The hyperparameter ¢ in Eq. (12)
and Eq. (13) of the main paper is set as 0.2. We use the
Adam optimizer for training the 2D and 3D semantic seg-
mentation network, with 81 = 0.9, 2 = 0.999. The learn-
ing rate is setas 1 x 1073,

S2. Datasets Overview of mDALU Benchmark

In Sec. 4 of the main paper, we introduce the bench-
mark setup of the mDALU problem. Here we provide more
details about the datasets involved in the benchmark.

S2.1. Image Classification

In the image classification benchmark of the main pa-
per, we adopt three digits datasets, including MNIST [9],
Synthetic Digits [3], and SVHN [11] dataset. MNIST is a
hand-written numbers image dataset, SVHN is a street view
house numbers image dataset and Synthetic Digits is a syn-
thetic numbers image dataset. In the image classification
benchmark of the main paper, we adopt these three different
style digits images, to introduce larger domain gap between
different source domains to effectively evaluate the validity
of different methods for mDALU problem. In Sec. S3, we
introduce two more datasets, MNIST-M [3] and USPS [0] ,
to evaluate the effectiveness of our approach when dealing
with more than two source domains. MNIST-M is a syn-
thetic numbers image dataset, and USPS is a hand-written
numbers image dataset. We follow the setup of splitting the
dataset in [12, 13]. In each of MNIST, MNIST-M, SVHN
and Synthetic Digits, 25000 images for training are sampled
from the training subset, and 9000 images for testing are
sampled from the testing subset. And for the USPS dataset,
due to there are only 9298 images in total are available, the
whole training set covering 7438 images is used for train-
ing, while the whole testing set with 1860 images is adopted
for testing. MNIST, MNIST-M, SVHN, Synthetic Digits,
USPS are abbreviated as MT, MM, SVHN, SYN, and UP,
respectively. The detailed label space of different source
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Figure S1: Overview of our approach to mDALU problem. Our approach is composed of two stages: (a) partially-supervised
adaptation stage, and (b) fully-supervised adaptation stage. In the partially-supervised adaptation stage, there are three
modules involved, the domain attention (DAT) module, the uncertainty maximization (UM) module, and the attention-guided
adversarial alignment (A®) module. Besides the supervised semantic segmentation loss £,,, on the source domain, the DAT
module is trained in the supervised way with L, the UM module is trained in the supervised way with L., and the A3
module is trained in the adversarial way with £,s 4+ L4. In the fully-supervised adaptation stage, in order to complete the
label space, the pseudo-label, for all the samples x*!, x°2, x! from all related domains, is generated by fusing the probability
map weighted by attention map from different branches, G1, M; and G2, M. Then the semantic segmentation network
G is trained in the complete and unified label space with the generated pseudo-label and the supervised loss Ly,. In the

implementation, G1, Go, M7, Ms share the same encoder and adopt different label predictors.
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Figure S2: Example images of different datasets in mDALU
image classification benchmark.

domains and the target domain under different experiments
setup is listed in Table S1 and Table S2. The example im-
ages of different datasets are shown in Fig. S2.

S2.2. 2D Semantic Image Segmentation

In the 2D semantic image segmentation benchmark of
the main paper, we adopt the synthetic image datasets,
GTAS [14] and SYNTHIA [15] and the real image dataset,
Cityscapes [2]. We introduce the label space of different
datasets in the main paper. Here we provide more additional
information about the datasets.

Cityscapes. Cityscapes is a dataset composed of the
street scene images collected from different European
cities. We use the training set of Cityscapes covering 2993
images, without the label information, as the target domain
during the training stage. And we adopt the validation set of
Cityscapes, which are composed of 500 images and densely
labeled with 19 classes, to evaluate the semantic segmenta-
tion performance of the model on the target domain.

GTAS. GTAS is a synthetic urban scene image dataset,
whose images are rendered from the game engine. The
scene of the images is based on the city of Los Angeles.
In our 2D semantic image segmentation benchmark, we use
24966 densely labeled images in the GTAS dataset as one
of our source domains, whose annotation is compatible with
that of Cityscapes.

SYNTHIA. SYNTHIA is a synthetic dataset, contain-
ing photo-realistic images rendered from a virtual city. We
use the SYNTHIA-RAND-Cityscapes subset, which con-
tains 9400 densely labeled images and the 16 class annota-
tion of which is compatible with that of Cityscapes. In our
2D semantic image segmentation benchmark, the labeled
SYNTHIA dataset serves as one of our source domains.

S2.3. Cross-Modal Semantic Segmentation

In the cross-modal semantic segmentation benchmark of
the main paper, three datasets are involved, Cityscapes [2],
Nuscenes [1] and A2D2 [5]. We introduce the label space
of different datasets in the main paper. Here we provide
more information on the datasets and the mapping between
our label space and the annotated class label in different
datasets.

Cityscapes. Cityscapes [2] is a 2D urban scene image
dataset, and has been introduced in the Sec. S2.2. In the
cross-modal semantic segmentation benchmark, we adopt
the training set of Cityscapes, covering 2975 images, as the



Experiment Label Space
Domain | Sourcel Source2 Target | Sourcel Source2 Target | Sourcel Source2 Target
Non-Overlapping(Table 2 in main paper) Dataset | SVHN SYN MT MT SVHN  SYN | MNIST SYN SVHN
Class 0~4 5~9 0~9 0~4 5~9 0~9 0~4 5~9 0~9
Domain | Sourcel Source2 Target | Sourcel Source2 Target | Sourcel Source2 Target
Partially-Overlapping(Table 4 in main paper) | Dataset | SVHN SYN MT MT SVHN SYN | MNIST SYN SVHN
Class 0~6 3~9 0~9 0~6 3~9 0~9 0~6 3~9 0~9

Table S1: The label space of different source domains and the target domain in the mDALU image classification benchmark

of the main paper.

More Source Domains Experiments (Table S5 in supplementary)

Domain | Sourcel Source2 Source3 Source4  Target
Dataset | SVHN SYN MM UP MT
Class 0~2 2~4 4~6 7~9 0~9
Dataset MT SYN MM UP SVHN
Class 0~2 2~4 4~6 7~9 0~9
Dataset MT SVHN MM UP SYN
Class 0~2 2~4 4~6 7~9 0~9
Dataset MT SVHN SYN UP MM
Class 0~2 2~4 4~6 7~9 0~9
Dataset MT SVHN SYN MM uUp
Class 0~2 2~4 4~6 7~9 0~9

Table S2: The label space of different source domains and the target domain in the mDALU image classification benchmark

of the more source domains experiments in the supplementary.

2D source domain. Unlike the Sec. S2.2 does not use the
label information of Cityscapes training images, we use the
ground truth label of Cityscapes training images, but the
label space of Cityscapes in our experiments only covers 6
classes, road, sidewalk, building, pole, sign and nature. The
mapping from the original Cityscapes annotated classes and
our label space is listed in Table S4.

Nuscenes. Nuscenes [!] is an autonomous driving
dataset covering 1000 driving scenes, which are collected
from the Boston and Singapore. Each scene, of 20-second
length, is sampled and annotated at 2HZ, resulting in 40K
well-annotated keyframes for 3D bounding boxes of the ob-
jects. In our cross-modal semantic segmentation bench-
mark, we adopt the training set of the Nuscenes, including
28130 keyframes 3D LiDAR points, as the 3D source do-
main. Then as done in [7], we generate the 3D point-wise
semantic labels from the 3D bounding boxes, by assign-
ing the object label to the points inside the bounding box
and taking the points outside the bounding box as unlabeled
points. The label space of the 3D source domain includes 4
classes, person, car, truck and bike. The mapping between
the object label annotation in Nuscenes and our label space
is reported in Table S4.

A2D2. A2D2 [5] is an autonomous driving dataset, in-
cluding simultaneously recorded paired 2D images and 3D
LiDAR points. The A2D2 covers 20 scenes, which are cor-
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Figure S3: t-SNE Visualization of the feature embedding on
the mDALU image classification benchmark, MT, SVHN,
MM, UP — SYN. We adopt the same t-SNE parameters for
all visualization.

responding to 28637 frames for training. And the scene
20180807-145028 is used for validation. The 2D images
are densely labeled with 38 semantic classes. Following [7],
the 3D point-wise semantic labels are generated by the re-
projection to the 2D images. In our cross-modal semantic
segmentation benchmark, the A2D2 serves as the target do-
main. We use the training set of A2D2 without the label
information during training, including the paired 2D im-
ages and 3D LiDAR points. And we use the validation set
20180807-145028 with the ground truth label for evaluat-
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Method g 8 g g B = 2 | mloU
Ours (PSF w/o relabeling) | 11.5 17.8 33.6 47.7 132 72 434 | 384
Ours (PSF w/ relabeling) | 13.3 179 306 53.7 182 19.8 432 | 40.0

Table S3: Quantitative comparison of w/ and w/o relabeling
inconsistent taxonomies in PSF module. The detailed per-
formance on inconsistent taxonomies classes is also shown.
The mloU is reported for 19 classes. The best results are
denoted in bold.

ing the performance. The label space of the target domain
for evaluation includes 10 classes, road, sidewalk, building,
pole, sign, nature, person, car, truck and bike. The map-
ping between the label space and the annotated 38 semantic
classses in A2D2 is shown in Table S4.

S3. Experiments with More Source Domains

In this section, we evaluate the effectiveness of our ap-
proach when dealing with more than two source domains.
Based on the classification benchmark of the main paper,
we here introduce two more datasets, MNIST-M [3] and
USPS [6], which are abbreviated as “MM” and “UP” re-
spectively. Then as done in the main paper, each time, one
of “MT”, “SYN”, “SVHN”, “° MM’ and “UP” is taken as
the target domain, while the other four are used as source
domains. The label space of different source domains in the
experiments is listed in Table S2.

Experimental results. In Table S5, we report the quan-
titative experimental results of the classification benchmark,
after introducing two more datasets, MM and UP. It can be
seen that our approach with the “partially-supervised adap-
tation” stage highly outperforms the source-only baseline,
the adaptation-based methods DANN, DCTN, and M3SDA,
and the label-unification based method AENT. It achieves
an average accuracy of 80.83% on the target domain. Then
by exploiting the “fully-supervised adaptation™ stage, the
performance is further improved to 82.88%. It proves the
effectiveness and the robustness of our approach for ad-
dressing the mDALU problem when more than two source
domains are given. In Fig. S3, the qualitative comparison of
feature embedding, t-SNE visualization [10], between our
approach and other methods is shown. It shows that our
approach is able to learn more discriminative features than
other methods. It further verifies the good performance of
our approach to mDALU problem.

S4. More Experimental Results for Semantic
Segmentation

Detailed experimental results for semantic segmenta-
tion. In Table 5a and Table 8 of the main paper, we show the
quantitative comparison, through the mloU, between our

approach and other methods, on the 2D and cross-modal se-
mantic segmentation benchmark. Correspondingly, we here
provide more detailed experimental results in Table S6 and
Table S7, covering the per-class IoU results.

Attention visualization for semantic segmentation.
During the “partially-supervised adaptation” stage, we in-
troduce the attention map in the domain attention (DAT)
module, the attention-guided adversarial alignment (A®)
module and the inference via attention-guided fusion. In
order to verify the effectiveness of our attention map predic-
tion, we show the qualitative visualization of the attention
map on the target domain images in Fig. S4. Correspond-
ing to the Sec. 3.2.1 of the main paper, the attention map a‘
and a}, are generated by feeding the target domain image
xt into the attention network M; and Ms. It is shown that
our predicted attention map a‘, corresponding to the source
domain S;, has higher attention value, for the objects be-
longing to the partial label space C;, such as the road, side-
walk, building, vegetation, sky and car. And the predicted
attention map 55, corresponding to the source domain So,
has higher attention value, for the objects belonging to the
partial label space Cs, such as the fence, pole, light, sign,
bus, motorcycle and bicycle. It proves the validity of our
attention map prediction.

Additional qualitative results for semantic segmenta-
tion. In Fig. 4 of the main paper, we show the qualitative
comparison results between our approach and other meth-
ods on the 2D semantic image segmentation benchmark,
and the source domain images are not translated with Cy-
cleGAN [20], i.e., the “NT” setting. Here we provide addi-
tional qualitative comparison results between our approach
and other methods on the 2D semantic image segmentation
benchmark, and the source images are translated with Cy-
cleGAN [20], i.e., the “T” setting. As shown in Fig. S5, it
can be seen that our approach obviously outperforms other
methods on the 2D semantic image segmentation bench-
mark. It further verifies the effectiveness of our approach
to mDALU problem.

Comparison between w/ and w/o relabeling inconsis-
tent taxonomies in the source domain. In Sec. 3.2.6 of
the main paper, we introduce the extension of our method
for inconsistent taxonomies. In the PSF module, besides the
unlabeled samples in the source domain being completed
with the predicted pseudo-label as in Eq. (12), we add
Eq. (17) to relabel the conflict part ¢ N ¢y, in the source
domain S,,. In Table 7 of the main paper, we show the
performance of our extended method 40.0% under incon-
sistent taxonomies setting, which outperforms other com-
peting methods significantly and proves the effectiveness of
our extended method for inconsistent taxonomies. Here, we
compare the ablation of our extended method, w/o relabel-
ing inconsistent taxonomies in the source domain, against
our full extended method, to further verify the effectiveness



label space A2D2 Cityscapes Nuscenes
d ‘rd normal street’, ‘zebra crossing’, ‘solid line’, ‘rd restricted area’, ‘slow drive area’, ‘road’
roa ‘drivable cobblestone’, ‘dashed line’, ‘painted driv. instr.’ roa -
sidewalk ‘sidewalk’, ‘curbstone’ ‘sidewalk’ -
building ‘buildings’ ‘building’ -
pole ‘poles’ ‘pole’ -
sign ‘traffic sign 17, ‘traffic sign 2, ‘traffic sign 3’ ‘traffic sign’ -
nature ‘nature object’ ‘vegetation’, ‘terrain’ -
person ‘pedestrian 1°, ‘pedestrian 2’, ‘pedestrian 3’ - ‘pedestrian’
car ‘car 17, ‘car 2’, ‘car 3’, ‘car 4°, ‘ego car’ - ‘car’
truck ‘truck 1°, ‘truck 2’, ‘truck 3’ - ‘truck’
. ‘bicycle 1°, ‘bicycle 2’, ‘bicycle 3°, ‘bicycle 4°, . I s
bike ‘small vehicles 1°, ‘small vehicles 2°, ‘small vehicles 3’ - motorcycle’, “bicycle
Table S4: Class mapping between the label space and the annotated classes in different datasets.
Method MT SYN SVHN MM UP Avg
Source 86.90 =040 63.80 =0.15 51.84 £2.13 52.09 £0.69 91.83 £0.78 69.29 £+ 0.83
DANNI4] 86.38 = 1.44 63.76 = 0.88 51.58 £2.27 52.14 +0.61 89.98 +1.42 68.77 + 1.32
DCTN [18] | 63.87 £0.10 53.33 £1.15 43.57+£0.98 40.23 £0.48 59.78 £1.19 52.16 £0.78
M3SDA [12] | 87.26 = 1.54 63.40 £0.32 4896+ 092 5228 +1.60 90.20 +0.97 68.42 & 1.07
AENTI[19] 79.55+240 63.22+041 52.58+2.27 48.65+0.31 87.62+1.36 6632+ 1.35
Ours w/o PSF | 94.90+0.23  78.37+0.58  72.18+0.44 63.01+0.74 95.70+0.44  80.83+0.49
Ours \ 96.60+0.07 80.68+0.30 73.82+0.35 66.62+0.62 96.70 + 0.22 82.88+0.31

Table S5: Quantitative comparison between our method and other SOTA methods, under mDALU image classification
benchmark with 4 source domains. “MT”, “SYN”, “SVHN", “MM?”, and “UP” represent the target domain. We implement

AENT on classification by utilizing the ambiguity cross entropy loss proposed in [

of relabeling inconsistent taxonomies as in Eq. (17). From
Table S3, it is shown that the performance is improved by

1.6% from 38.4% to 40.0%, by relabeling inconsistent tax-

(6]

onomies in the source domain. And the detailed perfor-

mance comparison on the inconsistent taxonomies classes

(7]

in Table S3 also proves the effectiveness of relabeling in-
consistent taxonomies in the source domain.
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GTAS5+SYNTHIA—Cityscapes
k=1 =

g = 0
= o0 = g 2
: s 5 s § = g 4 : 3
2T 85 2 9=z g 2 g & £ 5 g 5 4 s 2 £ g 2z
Setting Method 5] 3 3 g u“-c’ g g £ 8 e = E B g 3 g S 2 mloU
Source 30 101 421 73 6.6 106 312 613 39 732 275 162 99 14 1.6 00 86 38 | 177
AdaptSegNet[16] | 0.1 00 14 40 66 54 228 59 19 359 13 180 06 30 1.8 07 130 94 7.7

MinEnt[17] 320 100 73.0 154 18.1 20.5 753 39 796 513 187 185 43 48 92 203 103 | 27.1

Advent[17] 6.3 1.0 277 45 63 6.5 193 167 20 406 68 17.1 77 37 66 12 150 185 | 118

W W = D = = - .
B OB oo & oo traffic ligh
o O O L N

o

N}

NT Ours (w/o PSF) | 82.8 308 789 17.5 158 28.0 189 791 105 784 520 182 714 168 343 20 11.0 8.0 | 363
Ours (ADV) 82.1 352 781 273 18.8 29.6 21.1 783 369 753 589 250 69.6 193 338 00 156 229 | 40.1

Ours (PSF) 77.8 319 795 179 18.1 29.0 209 802 90 796 556 209 744 169 255 0.0 17.0 189 | 373

Ours (ADV+PSF) | 81.7 34.1 79.5 267 194 290 320 232 823 314 795 575 223 666 268 402 00 194 204 | 40.6

Source 287 95 523 I1.1 100 95 164 30.6 559 27 675 408 21.1 387 69 43 64 221 20.6| 240
AdaptSegNet[16] | 783 345 757 162 156 115 190 108 780 165 763 426 84 596 109 88 05 142 87 30.8
MinEnt[17] 585 206 705 120 179 183 199 27.1 743 80 791 465 205 377 9.1 204 28 189 10.6 | 30.1

T Advent[17] 78.0 343 759 145 58 98 172 102 764 150 769 406 3.1 613 193 145 00 99 125 303

Ours(w/o PSF) 86.0 40.8 79.1 132 227 335 333 189 799 332 720 497 19.1 633 206 10.1 00 134 340 | 38.1
Ours (ADV) 86.2 413 81.6 21.1 233 334 320 206 81.0 321 798 575 264 705 248 314 02 183 27.1 | 415
Ours (PSF) 878 429 812 173 220 341 369 179 822 342 736 589 251 765 244 289 0.1 198 419 | 424

Ours (PSF+ADV) | 86.8 425 825 23.0 23.1 344 363 29.1 829 343 765 565 241 755 23.6 173 03 220 41.6| 428

Table S6: Per-Class IoU on the mDALU 2D semantic image segmentation benchmark. “NT” means source domain images
are not translated with CycleGAN, and “T” means source domain images are translated with CycleGAN. The mloU results
are reported over 19 classes. The best results are denoted in bold.

Cityscapes+Nuscenes—A2D2
=

5 2 g
T £ 2 = g 5 3 3 3
Modality Method § 3 B g 7 g g § g i mloU
Sources 83.1 487 850 348 361 8.0 00 00 00 0.0 375
xMUDA 682 138 223 221 157 36 01 159 16 00| 163
ES + MinEnt 557 156 649 198 217 452 00 00 00 0.0 223
D ES + KL 144 200 742 153 366 462 00 93 15 0.0 21.7
xMUDA + AKL 448 297 465 362 336 614 0.0 210 18 0.0]| 275
xMUDA + AKL + COMP | 70.3 38.1 764 250 305 808 00 00 00 00/ 321
Ours (w/o PSF) 858 543 81.8 341 408 814 00 00 28 00| 38.1
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Source 00 00 00 00 00 00 21 161 14 00| 20
xMUDA 00 00 00 00 00 00 12 146 15 00 1.7
ES + MinEnt 00 00 00 00 00 00 19 120 15 00 1.5
3D ES + KL 00 00 00 00 00 00 19 98 18 12 1.5
xMUDA + AKL 00 00 00 00 00 00 24 185 13 04| 23
xMUDA + AKL + COMP | 6.1 1.8 00 00 00 00 21 179 13 00| 29
Ours (w/o PSF) 06 07 03 00 00 24 13 161 23 00| 24
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Ours(w/o PSF) 91.1 573 857 397 474 859 86 578 253 04| 499
Ours 91.7 586 90.1 345 588 903 154 724 436 13| 55.7

Table S7: Per-Class IoU on the mDALU cross-modal semantic segmentation benchmark. The mloU results are reported over
10 classes. The best results are denoted in bold.
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Figure S4: Visualization of the attention map a¢ and &% of the target domain images. (a) is the Cityscapes image x’. (b) is
the attention map a}, generated by feeding the x! into the attention network M;. (c) is the attention map ab, generated by
feeding the x* into the attention network M,. Red parts are the parts with higher attention value, while the blue parts with
lower attention value.

(a) Image v (b) Ground Truth (c) Source Onl}r (d) AdaptSegNet (e) Ours

Figure S5: Qualitative comparison of semantic segmentation results, under the mDALU 2D semantic image segmentation
benchmark, SYNTHIA + GTAS — Cityscapes. The source images are translated with CycleGAN, i.e., setting “T”.
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