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7. Additional Results
7.1. Class-wise Detection Results

In the paper, we follow the setting of DA-FRCN [2], SCL
[9] and GPA [11] for fair comparison, which only have car
results in the adaptation between Cityscapes — KITTL In
order to verify the generalization ability of our method, we
conduct an experiment training with 4-classes label (4 over-
lapped classes in these two datasets). Results in Tab. 8
shows that PIT can work on multi-class training.

7.2. Class-wise Segmentation Results

Tab. 10 and Tab. 11 shows the IoU of each class in se-
mantic segmentation experiments. The results demonstrate
that PIT module tends to improve the performance of large
objects, for the reason that their area spans a larger FoV and
thus lead to a greater extent of intra-instance deformation in
the original images.

7.3. Full-size FoV-decreasing Adaptation

Sec. 3.2 analyzes the different situation (i.e. whether the
source image is sufficient) in FoV-decreasing case, and Sec.
4.3.2 gives the result of insufficient source images (a sub-
set of source dataset). For reference, Tab. 9 shows the re-
sult of sufficient source images (the fullsize source dataset).
In FoV-decreasing case, the PIT module works better when
there are not enough source samples.

8. Computational Overhead

Datasets can be transformed and saved before training,
and it takes little time to transform an image. For example,
it takes 0.27s to process an image in Cityscapes (2048 x
1024 pixels), and 0.06s for one from KITTI (1242 x 375
pixels) with a Tesla V100 GPU.

Table 12 shows the time comparison of segmentation
task Cityscapes—KITTI with and without PIT. Due to the
fact the Self-Ensembling [3] is the repredentative method of
the consistency regulaization [5, 6, 10, 12, 13], we use [3]
as our backbone framework. It needs little additional time
to train with PIT and reverse PIT modules. Using our re-
weighting strategy, training time for each iteration declines

Table 8: Multi-class detection results (%) of Cityscapes —
KITTI

Method | car  person rider truck mAP

SWDA [8] 73.26  56.78  19.69
SWDA +PIT | 75.30  56.93 26.13

17.24  41.74
18.48 44.21

Table 9: Detection results (carAP, %) of KITTI —
Cityscapes and Virtual KITTI — Cityscapes.

‘ Datasets
| K—=C VK—=C

SWDA [§] 41.68 38.59
SWDA +PIT | 41.89 39.49

Method

due to the smaller sizes of transformed images, and the per-
formance remain similar (mloU = 60.62% for reverse PIT
and 61.00% for re-weighting). Adding the fixed time of
PIT process, the average time rises little in few iterations,
and even becomes less in a large number of iterations. In
addition, the inference time per image in this task changes
from 0.081s to 0.096s when adding our method, which only
costs 10.9s extra time for the validation of 748 images.

9. Qualitative results

We visualize the qualitative results of task Cityscapes [4]
(50°, 25°) — KITTI [7] (90°, 34°).

Fig. 7 shows the detection results using GPA [11] as
the baseline. In results of the baseline (left column), the
off-centered objects are likely to be recognized as several
smaller objects or be detected partially due to their greater
deformation extent. Our method (right column) solves these
problem successfully by alleviating this kind of deforma-
tion, leading to clearer and more precise predicted bounding
boxes.

Using Self-Ensembling [3] as the baseline, we get the
qualitative segmentation results in Fig. 8. Our method
provides more accurate predictions, especially in the off-
centered pixels.



Table 10: Class-wise adaptive segmentation results (%) of Cityscapes — KITTL

Method g 2 B E] & ' 2 2 g 5 £ & 5 g 2 g g % | E
Self-Ensembling [ 8536 4830 80.50 3798 39.95 4564 5895 53.08 87.86 5270 93.40 58.09 47.01 87.21 5220 68.08 37.41 4924 4828 | 59.54
Self-Ensembling + PIT ‘ 88.86 49.00 81.18 43.04 4090 38.10 57.57 5346 8743 5715 93.62 5293 4775 90.17 60.52 69.80 65.04 3299 4941 ‘ 61.00
CowMix [6] 8526 49.16 80.64 38.63 4193 43.16 6047 5697 8681 47.65 93.08 5841 4223 87.15 49.16 66.58 40.66 46.80 49.09 | 59.15
CowMix + PIT ‘ 90.44 4831 80.71 4146 38.16 38.10 57.68 53.06 87.76 60.81 9339 50.27 50.87 90.41 58.05 76.99 3695 4248 51.13 ‘ 60.37
CutMix [5] ‘ 85.61 4756 77.89 3771 39.71 4535 5985 5550 8691 4831 9277 5471 5346 86.70 45.06 7274 3123 49.05 46.73 ‘ 58.78
CutMix + PIT 90.81 4840 80.48 48.99 3721 39.79 58.11 5257 8728 61.70 9273 50.99 51.65 89.86 52.67 70.63 37.00 4256 48.20 | 60.09
DACS [10] 8490 46.10 80.04 34.10 37.84 4321 56.13 55.12 8891 5858 93.05 57.15 4580 86.98 46.67 76.35 39.48 4753 46.73 | 59.19
DACS + PIT ‘ 90.30 51.18 78.63 41.22 41.08 4135 59.29 5523 8675 59.15 90.78 54.14 4994 88.63 56.62 66.15 56.67 37.10 51.42 ‘ 60.82
Table 11: Class-wise adaptive segmentation results (%) of Virtual KITTI — KITTL.
=
an g o
5 3 £ » =)
el 1 3] E = ] ] 3} =]
] = — &0 = > =
Method e E - - g g 3 E | E
GIO-Ada*(CVPR’19) [1] \ 81.4 71.2 11.3 26.6 23.6 82.8 56.5 88.4 80.1 12.7 \ 53.5
Self-Ensembling [3] 84.63 7142 10.14 2851 40.09 46.58 89.33 84.85 16.19 82.80 | 5545
Self-Ensembling + PIT 86.67 72.83 7.14 2977 40.70 5695 90.13 8598 1695 85.10 | 57.22
CowMix [6] 83.89 6896 12.58 3030 39.02 50.77 89.05 84.02 18.00 84.14 | 56.07
CowMix + PIT 87.16 6754 843 3033 4253 5423 91.10 86.69 20.85 83.58 | 57.24
CutMix [5] 84.05 7195 12.09 34.04 3695 5147 87.64 83.89 10.77 8299 | 55.58
CutMix + PIT 87.53 66.08 12.54 30.15 4135 55.61 90.83 86.56 12.76 83.79 | 56.72
DACS [10] 8735 66.81 1049 3024 4194 5492 9097 86.63 16.81 83.69 | 56.98
DACS + PIT 85.82 7221 508 26.64 42.07 52.87 9043 86.07 20.50 84.03 | 56.57

* the reported performance from its original paper.

Table 12: Time comparison of segmentation task Cityscapes — KITTI on a Tesla V100 GPU. RPIT refers to directly using

reversed PIT in loss calculation, while re-weighting means using our proposed re-weighting strategy.

Iteration Method ‘ TPIT(S) ﬂrain (S) Ttotal(s) Taverage(s)
Self-Ensembling [3] 0 9,454.8 9,454.8 0.95
10k Self-Ensembling + PIT (RPIT) 1,207.2 9,849.1 11,056.3 1.11
Self-Ensembling + PIT (re-weighting) | 1,207.2  9,150.3  10,357.5 1.04
Self-Ensembling [3] 0 94,548.0 94,548.0 0.95
100k Self-Ensembling + PIT (RPIT) 1,207.2  98,491.0 99,698.2 1.00
Self-Ensembling + PIT (re-weighting) | 1,207.2  91,503.0 92,710.2 0.93




(a) GPA (b) Ours (GPA)

Figure 7: Qualitative detection results of task Cityscapes — KITTI, all the predictions are car class.
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(a) Target image (b) Ground truth (c) Self-Ensembling (d) Ours (Self-Ensembling)

Figure 8: Qualitative segmentation results of task Cityscapes — KITTL
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