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7. Additional Results
7.1. Class-wise Detection Results

In the paper, we follow the setting of DA-FRCN [2], SCL
[9] and GPA [11] for fair comparison, which only have car
results in the adaptation between Cityscapes → KITTI. In
order to verify the generalization ability of our method, we
conduct an experiment training with 4-classes label (4 over-
lapped classes in these two datasets). Results in Tab. 8
shows that PIT can work on multi-class training.

7.2. Class-wise Segmentation Results

Tab. 10 and Tab. 11 shows the IoU of each class in se-
mantic segmentation experiments. The results demonstrate
that PIT module tends to improve the performance of large
objects, for the reason that their area spans a larger FoV and
thus lead to a greater extent of intra-instance deformation in
the original images.

7.3. Full-size FoV-decreasing Adaptation

Sec. 3.2 analyzes the different situation (i.e. whether the
source image is sufficient) in FoV-decreasing case, and Sec.
4.3.2 gives the result of insufficient source images (a sub-
set of source dataset). For reference, Tab. 9 shows the re-
sult of sufficient source images (the fullsize source dataset).
In FoV-decreasing case, the PIT module works better when
there are not enough source samples.

8. Computational Overhead
Datasets can be transformed and saved before training,

and it takes little time to transform an image. For example,
it takes 0.27s to process an image in Cityscapes (2048 ×
1024 pixels), and 0.06s for one from KITTI (1242 × 375
pixels) with a Tesla V100 GPU.

Table 12 shows the time comparison of segmentation
task Cityscapes→KITTI with and without PIT. Due to the
fact the Self-Ensembling [3] is the repredentative method of
the consistency regulaization [5, 6, 10, 12, 13], we use [3]
as our backbone framework. It needs little additional time
to train with PIT and reverse PIT modules. Using our re-
weighting strategy, training time for each iteration declines

Table 8: Multi-class detection results (%) of Cityscapes →
KITTI.

Method car person rider truck mAP

SWDA [8] 73.26 56.78 19.69 17.24 41.74
SWDA + PIT 75.30 56.93 26.13 18.48 44.21

Table 9: Detection results (carAP, %) of KITTI →
Cityscapes and Virtual KITTI → Cityscapes.

Method
Datasets

K → C VK → C

SWDA [8] 41.68 38.59
SWDA + PIT 41.89 39.49

due to the smaller sizes of transformed images, and the per-
formance remain similar (mIoU = 60.62% for reverse PIT
and 61.00% for re-weighting). Adding the fixed time of
PIT process, the average time rises little in few iterations,
and even becomes less in a large number of iterations. In
addition, the inference time per image in this task changes
from 0.081s to 0.096s when adding our method, which only
costs 10.9s extra time for the validation of 748 images.

9. Qualitative results
We visualize the qualitative results of task Cityscapes [4]

(50◦, 25◦) → KITTI [7] (90◦, 34◦).
Fig. 7 shows the detection results using GPA [11] as

the baseline. In results of the baseline (left column), the
off-centered objects are likely to be recognized as several
smaller objects or be detected partially due to their greater
deformation extent. Our method (right column) solves these
problem successfully by alleviating this kind of deforma-
tion, leading to clearer and more precise predicted bounding
boxes.

Using Self-Ensembling [3] as the baseline, we get the
qualitative segmentation results in Fig. 8. Our method
provides more accurate predictions, especially in the off-
centered pixels.
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Table 10: Class-wise adaptive segmentation results (%) of Cityscapes → KITTI.
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Self-Ensembling [3] 85.36 48.30 80.50 37.98 39.95 45.64 58.95 53.08 87.86 52.70 93.40 58.09 47.01 87.21 52.20 68.08 37.41 49.24 48.28 59.54
Self-Ensembling + PIT 88.86 49.00 81.18 43.04 40.90 38.10 57.57 53.46 87.43 57.15 93.62 52.93 47.75 90.17 60.52 69.80 65.04 32.99 49.41 61.00

CowMix [6] 85.26 49.16 80.64 38.63 41.93 43.16 60.47 56.97 86.81 47.65 93.08 58.41 42.23 87.15 49.16 66.58 40.66 46.80 49.09 59.15
CowMix + PIT 90.44 48.31 80.71 41.46 38.16 38.10 57.68 53.06 87.76 60.81 93.39 50.27 50.87 90.41 58.05 76.99 36.95 42.48 51.13 60.37

CutMix [5] 85.61 47.56 77.89 37.71 39.71 45.35 59.85 55.50 86.91 48.31 92.77 54.71 53.46 86.70 45.06 72.74 31.23 49.05 46.73 58.78
CutMix + PIT 90.81 48.40 80.48 48.99 37.21 39.79 58.11 52.57 87.28 61.70 92.73 50.99 51.65 89.86 52.67 70.63 37.00 42.56 48.20 60.09

DACS [10] 84.90 46.10 80.04 34.10 37.84 43.21 56.13 55.12 88.91 58.58 93.05 57.15 45.80 86.98 46.67 76.35 39.48 47.53 46.73 59.19
DACS + PIT 90.30 51.18 78.63 41.22 41.08 41.35 59.29 55.23 86.75 59.15 90.78 54.14 49.94 88.63 56.62 66.15 56.67 37.10 51.42 60.82

Table 11: Class-wise adaptive segmentation results (%) of Virtual KITTI → KITTI.
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GIO-Ada*(CVPR’19) [1] 81.4 71.2 11.3 26.6 23.6 82.8 56.5 88.4 80.1 12.7 53.5

Self-Ensembling [3] 84.63 71.42 10.14 28.51 40.09 46.58 89.33 84.85 16.19 82.80 55.45
Self-Ensembling + PIT 86.67 72.83 7.14 29.77 40.70 56.95 90.13 85.98 16.95 85.10 57.22

CowMix [6] 83.89 68.96 12.58 30.30 39.02 50.77 89.05 84.02 18.00 84.14 56.07
CowMix + PIT 87.16 67.54 8.43 30.33 42.53 54.23 91.10 86.69 20.85 83.58 57.24

CutMix [5] 84.05 71.95 12.09 34.04 36.95 51.47 87.64 83.89 10.77 82.99 55.58
CutMix + PIT 87.53 66.08 12.54 30.15 41.35 55.61 90.83 86.56 12.76 83.79 56.72

DACS [10] 87.35 66.81 10.49 30.24 41.94 54.92 90.97 86.63 16.81 83.69 56.98
DACS + PIT 85.82 72.21 5.08 26.64 42.07 52.87 90.43 86.07 20.50 84.03 56.57

∗ the reported performance from its original paper.

Table 12: Time comparison of segmentation task Cityscapes → KITTI on a Tesla V100 GPU. RPIT refers to directly using
reversed PIT in loss calculation, while re-weighting means using our proposed re-weighting strategy.

Iteration Method TPIT (s) Ttrain (s) Ttotal(s) Taverage(s)

10k
Self-Ensembling [3] 0 9,454.8 9,454.8 0.95
Self-Ensembling + PIT (RPIT) 1,207.2 9,849.1 11,056.3 1.11
Self-Ensembling + PIT (re-weighting) 1,207.2 9,150.3 10,357.5 1.04

100k
Self-Ensembling [3] 0 94,548.0 94,548.0 0.95
Self-Ensembling + PIT (RPIT) 1,207.2 98,491.0 99,698.2 1.00
Self-Ensembling + PIT (re-weighting) 1,207.2 91,503.0 92,710.2 0.93
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Figure 7: Qualitative detection results of task Cityscapes → KITTI, all the predictions are car class.
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Figure 8: Qualitative segmentation results of task Cityscapes → KITTI.
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