## Removing the Bias of Integral Pose Regression Supplementary Material

Kerui Gu<sup>1</sup> Linlin Yang<sup>1,2</sup> Angela Yao<sup>1</sup> <sup>1</sup>National University of Singapore, Singapore <sup>2</sup>University of Bonn, Germany

{keruigu, yangll, ayao}@comp.nus.edu.sg

We present the detailed derivation of the bias and some details about experiments. Note that all the notation and abbreviations here are consistent with the main paper.

## A. Derivation of Bias

As defined in the main paper, we obtain the normalized heatmap by soft-argmax function as follows:

$$\tilde{\mathbf{H}}(\mathbf{p}) = \frac{\exp(\beta \cdot \mathbf{H}(\mathbf{p}))}{\sum_{\mathbf{p}' \in \Omega} \exp(\beta \cdot \mathbf{H}(\mathbf{p}'))}, \quad \beta > 0, \qquad (1)$$

where  $\mathbf{H}(\mathbf{p})$  is the heatmap output of the network and indexed by pixel  $\mathbf{p}$  over the range of pixels  $\Omega$ . For convenience, we further define a variable C as the denominator of Eq. (1):

$$C = \sum_{\mathbf{p}' \in \Omega} \exp(\beta \cdot \mathbf{H}(\mathbf{p}')).$$
(2)

We can further partition the heatmap's pixels  $\Omega$  into four sections  $\{\Omega_1, \Omega_2, \Omega_3, \Omega_4\}$  as visualized in Fig. 1.  $\Omega_1$  is defined such that the true joint location  $(x_o, y_o)$  is the expected value and center of the section. The key assumption that we make in our work is that the heatmap support for the true joint location  $(x_o, y_o)$  is well localized and fully contained within  $\Omega_1$  in **H**. As such, the sections  $\Omega_2$  to  $\Omega_4$  contain only zero or near-zero elements so we can approximate Eq. (1) for the four sections as follows:

$$\tilde{\mathbf{H}}(\mathbf{p}) \approx \begin{cases} \frac{1}{C} \cdot \exp(\beta_k \mathbf{H}(\mathbf{p})) & \text{for } \mathbf{p} \in \Omega_1 \\ \frac{1}{C} & \text{for } \mathbf{p} \in \{\Omega_2, \Omega_3, \Omega_4\} \end{cases}$$
(3)

where the normalized heat map value approximates to 1/C for  $\mathbf{p} \in \{\Omega_2, \Omega_3, \Omega_4\}$ , since the exponential of a zero in the numerator is simply 1.

The (biased) joint location  $\mathbf{J}^r(x_r, y_r)$  is defined as the expected value of the entire heatmap, which can be further decomposed into the four sections:



Figure 1: Partitioning of heatmap into four sections to estimate the bias.  $\Omega_1$  is assumed to contain the full support and is centered at the true joint location  $(x_o, y_o)$ , while  $\Omega_2$ ,  $\Omega_3$ and  $\Omega_4$  are assumed to be (near)-zero values. We illustrate the heatmap with a Gaussian for visualization purposes, but our method does not make any assumption on the form or symmetry of the heatmap density.

$$\mathbf{J}^{r} = \sum_{\mathbf{p}\in\Omega} \tilde{\mathbf{H}}(\mathbf{p}) \cdot \mathbf{p}$$
(4)

$$=\sum_{\mathbf{p}\in\Omega_{1}}\tilde{\mathbf{H}}(\mathbf{p})\cdot\mathbf{p}+\sum_{\mathbf{p}\in\Omega_{2},\Omega_{3},\Omega_{4}}\tilde{\mathbf{H}}(\mathbf{p})\cdot\mathbf{p}.$$
 (5)

We can also view  $\mathbf{J}^r = (x_r, y_r)$  as a weighted sum of the expected location of each section:

$$\mathbf{J}^{r} = w_{1}\mathbf{J}_{1} + w_{2}\mathbf{J}_{2} + w_{3}\mathbf{J}_{3} + w_{4}\mathbf{J}_{4},$$
  
where  $w_{k} = \sum_{\mathbf{p}\in\Omega_{k}}\tilde{\mathbf{H}}(\mathbf{p}), \text{ for } k = 1, 2, 3, 4$  (6)

| De/Re    | Few kpts          | some kpts         | many kpts         | all               |
|----------|-------------------|-------------------|-------------------|-------------------|
| Many occ | 28.5/ <b>26.6</b> | 14.1/ <b>13.3</b> | 14.2/ <b>14.7</b> | 16.8/ <b>16.6</b> |
| some occ | 22.2/ <b>20.5</b> | <b>6.72</b> /6.93 | <b>7.18</b> /7.20 | 8.27/ <b>8.20</b> |
| few occ  | 26.9/ <b>26.4</b> | <b>7.19</b> /7.38 | <b>5.12</b> /5.29 | <b>5.78</b> /5.95 |
| all      | 25.8/ <b>24.1</b> | <b>7.98</b> /8.10 | <b>6.74</b> /6.93 | <b>8.09</b> /8.14 |

Table 1: HRNet - Comparisons about EPE on COCO validation set. De and Re refers to detection and regression method respectively.

|     | Few kpts | some kpts | many kpts | all  |
|-----|----------|-----------|-----------|------|
| М   | 401      | 794       | 1218      | 2413 |
| L   | 174      | 327       | 747       | 1248 |
| XL  | 103      | 187       | 492       | 782  |
| XXL | 256      | 484       | 1169      | 1909 |
| all | 934      | 1792      | 3626      | 6352 |

Table 2: number of person instances when separating the benchmarks according to number of present joints and input size.

where  $\mathbf{J}_1 = (x_o, y_o)$ ,  $\mathbf{J}_2 = (x_o, y_o + \frac{w}{2})$ ,  $\mathbf{J}_3 = (x_o + \frac{h}{2}, w/2)$ , and  $\mathbf{J}_4 = (x_o + \frac{h}{2}, y_o + \frac{w}{2})$ . Due to the symmetry of each region, we can also represent the weights  $w_2$  to  $w_4$  as an expression of w, h and C.

$$w_{2} = \frac{1}{C} \cdot 2x_{o}(w - 2y_{o}),$$
  

$$w_{3} = \frac{1}{C} \cdot 2(h - 2x_{o})y_{o},$$
  

$$w_{4} = \frac{1}{C} \cdot (h - 2x_{o})(w - 2y_{o}).$$
(7)

We can reformulate Eq. (6) in matrix format:

$$\begin{bmatrix} x_r \\ y_r \end{bmatrix} = \begin{bmatrix} w_1 x_o + w_2 x_o + w_3 (x_o + \frac{h}{2}) + w_4 (x_o + \frac{h}{2}) \\ w_1 y_o + w_2 (y_o + \frac{w}{2}) + w_3 y_o + w_4 (y_o + \frac{w}{2}) \end{bmatrix}.$$
(8)

Substituting the weights from Eq. (7) into Eq. (8) and with the knowledge that  $w_1 = 1 - w_2 - w_3 - w_4$ , we arrive at the following linear equation:

$$\mathbf{J}^{r} = \begin{bmatrix} x_{r} \\ y_{r} \end{bmatrix} = \begin{bmatrix} (1 - \frac{hw}{C})x_{o} + \frac{hw}{C}\frac{h}{2} \\ (1 - \frac{hw}{C})y_{o} + \frac{hw}{C}\frac{w}{2} \end{bmatrix}.$$
 (9)

Even though we began our derivation with  $(x_o, y_o)$  being located in  $\Omega_1$  which is in the upper left quadrant, Eq. (9) is equally applicable when  $(x_o, y_o)$  is located in the other three quadrants. If we look at the Eq. (9), if  $x_o < \frac{h}{2}$ , then  $x_r > x_o$ which pushes the coordinate to move towards the center. If

|          | Few kpts | some kpts | many kpts | all  |
|----------|----------|-----------|-----------|------|
| Many occ | 167      | 149       | 52        | 368  |
| some occ | 182      | 584       | 602       | 1368 |
| few occ  | 585      | 1059      | 2972      | 4616 |
| all      | 934      | 1792      | 3626      | 6352 |

Table 3: number of person instances when separating the benchmarks according to number of present joints and percentage of occlusions.

| D/R/S    | Few kpts                 | some kpts                | many kpts                |
|----------|--------------------------|--------------------------|--------------------------|
| Many occ | 32.0 / <b>28.1</b> /28.2 | 23.7 / 22.8/ <b>22.2</b> | 27.1 / 24.3/23.8         |
| some occ | 16.0 / 14.8/ <b>14.4</b> | 6.88/ 7.00/ <b>6.86</b>  | 6.78 / 7.18/ <b>6.62</b> |
| few occ  | 16.6 / 15.2/ <b>14.3</b> | 8.36 / 8.53/ <b>7.08</b> | 4.91 / 5.22/ <b>4.84</b> |

Table 4: Comparison of EPE of our method with detection and regression based method on sub benchmarks divided by our proposed method on COCO validation set.

 $x_o > \frac{h}{2}$ , then  $x_r < x_o$  which also make the prediction to be closer to the center.  $y_o$  is same as  $x_o$ . Therefore, this equation is applicable to all quadrants.

Therefore, we can predict  $\mathbf{J}^{o}$  from  $\mathbf{J}^{r}$  in closed form as follows:

$$\mathbf{J}^{ro} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} \frac{C}{C-hw} x_r - \frac{hw^2}{2(C-hw)} \\ \frac{C}{C-hw} y_r - \frac{h^2 w}{2(C-hw)} \end{bmatrix}, \quad (10)$$

which is the result in the main paper.

## **B. Experiment Details**

We report the experiment results of HRNet [2]'s performance on different sub-benchmarks in Table 1.

We report the number of person instances in each sub benchmarks divided by the proposed factors on COCO [1] validation set in Table 2 and Table 3.

We also report the detailed EPE of our method on the divided sub benchmarks in Table 4 to support the Fig. 5 in the main paper.

## References

- Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, pages 740–755. Springer, 2014. 2
- [2] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep highresolution representation learning for human pose estimation. In *CVPR*, pages 5693–5703, 2019. 2