# Removing the Bias of Integral Pose Regression Supplementary Material 

Kerui Gu ${ }^{1}$ Linlin Yang ${ }^{1,2} \quad$ Angela Yao ${ }^{1}$<br>${ }^{1}$ National University of Singapore, Singapore<br>${ }^{2}$ University of Bonn, Germany<br>\{keruigu, yangll, ayao\}@comp.nus.edu.sg

We present the detailed derivation of the bias and some details about experiments. Note that all the notation and abbreviations here are consistent with the main paper.

## A. Derivation of Bias

As defined in the main paper, we obtain the normalized heatmap by soft-argmax function as follows:

$$
\begin{equation*}
\tilde{\mathbf{H}}(\mathbf{p})=\frac{\exp (\beta \cdot \mathbf{H}(\mathbf{p}))}{\sum_{\mathbf{p}^{\prime} \in \Omega} \exp \left(\beta \cdot \mathbf{H}\left(\mathbf{p}^{\prime}\right)\right)}, \quad \beta>0 \tag{1}
\end{equation*}
$$

where $\mathbf{H}(\mathbf{p})$ is the heatmap output of the network and indexed by pixel $\mathbf{p}$ over the range of pixels $\Omega$. For convenience, we further define a variable $C$ as the denominator of Eq. (1):

$$
\begin{equation*}
C=\sum_{\mathbf{p}^{\prime} \in \Omega} \exp \left(\beta \cdot \mathbf{H}\left(\mathbf{p}^{\prime}\right)\right) \tag{2}
\end{equation*}
$$

We can further partition the heatmap's pixels $\Omega$ into four sections $\left\{\Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}\right\}$ as visualized in Fig. 1. $\Omega_{1}$ is defined such that the true joint location $\left(x_{o}, y_{o}\right)$ is the expected value and center of the section. The key assumption that we make in our work is that the heatmap support for the true joint location $\left(x_{o}, y_{o}\right)$ is well localized and fully contained within $\Omega_{1}$ in $\mathbf{H}$. As such, the sections $\Omega_{2}$ to $\Omega_{4}$ contain only zero or near-zero elements so we can approximate Eq. (1) for the four sections as follows:

$$
\tilde{\mathbf{H}}(\mathbf{p}) \approx \begin{cases}\frac{1}{C} \cdot \exp \left(\beta_{k} \mathbf{H}(\mathbf{p})\right) & \text { for } \mathbf{p} \in \Omega_{1}  \tag{3}\\ \frac{1}{C} & \text { for } \mathbf{p} \in\left\{\Omega_{2}, \Omega_{3}, \Omega_{4}\right\}\end{cases}
$$

where the normalized heat map value approximates to $1 / C$ for $\mathbf{p} \in\left\{\Omega_{2}, \Omega_{3}, \Omega_{4}\right\}$, since the exponential of a zero in the numerator is simply 1 .

The (biased) joint location $\mathbf{J}^{r}\left(x_{r}, y_{r}\right)$ is defined as the expected value of the entire heatmap, which can be further decomposed into the four sections:


Figure 1: Partitioning of heatmap into four sections to estimate the bias. $\Omega_{1}$ is assumed to contain the full support and is centered at the true joint location $\left(x_{o}, y_{o}\right)$, while $\Omega_{2}, \Omega_{3}$ and $\Omega_{4}$ are assumed to be (near)-zero values. We illustrate the heatmap with a Gaussian for visualization purposes, but our method does not make any assumption on the form or symmetry of the heatmap density.

$$
\begin{align*}
\mathbf{J}^{r} & =\sum_{\mathbf{p} \in \Omega} \tilde{\mathbf{H}}(\mathbf{p}) \cdot \mathbf{p}  \tag{4}\\
& =\sum_{\mathbf{p} \in \Omega_{1}} \tilde{\mathbf{H}}(\mathbf{p}) \cdot \mathbf{p}+\sum_{\mathbf{p} \in \Omega_{2}, \Omega_{3}, \Omega_{4}} \tilde{\mathbf{H}}(\mathbf{p}) \cdot \mathbf{p} \tag{5}
\end{align*}
$$

We can also view $\mathbf{J}^{r}=\left(x_{r}, y_{r}\right)$ as a weighted sum of the expected location of each section:

$$
\begin{align*}
\mathbf{J}^{r} & =w_{1} \mathbf{J}_{1}+w_{2} \mathbf{J}_{2}+w_{3} \mathbf{J}_{3}+w_{4} \mathbf{J}_{4} \\
\text { where } w_{k} & =\sum_{\mathbf{p} \in \Omega_{k}} \tilde{\mathbf{H}}(\mathbf{p}), \quad \text { for } k=1,2,3,4 \tag{6}
\end{align*}
$$

| De/Re | Few kpts | some kpts | many kpts | all |
| :--- | :---: | :---: | :---: | :---: |
| Many occ | $28.5 / \mathbf{2 6 . 6}$ | $14.1 / \mathbf{1 3 . 3}$ | $14.2 / \mathbf{1 4 . 7}$ | $16.8 / \mathbf{1 6 . 6}$ |
| some occ | $22.2 / \mathbf{2 0 . 5}$ | $\mathbf{6 . 7 2 / 6 . 9 3}$ | $\mathbf{7 . 1 8 / 7 . 2 0}$ | $8.27 / \mathbf{8 . 2 0}$ |
| few occ | $26.9 / 26.4$ | $\mathbf{7 . 1 9 / 7 . 3 8}$ | $\mathbf{5 . 1 2 / 5 . 2 9}$ | $\mathbf{5 . 7 8 / 5 . 9 5}$ |
| all | $25.8 / \mathbf{2 4 . 1}$ | $\mathbf{7 . 9 8} / 8.10$ | $\mathbf{6 . 7 4 / 6 . 9 3}$ | $\mathbf{8 . 0 9 / 8 . 1 4}$ |

Table 1: HRNet - Comparisons about EPE on COCO validation set. De and Re refers to detection and regression method respectively.

|  | Few kpts | some kpts | many kpts | all |
| :--- | :---: | :---: | :---: | :---: |
| M | 401 | 794 | 1218 | 2413 |
| L | 174 | 327 | 747 | 1248 |
| XL | 103 | 187 | 492 | 782 |
| XXL | 256 | 484 | 1169 | 1909 |
| all | 934 | 1792 | 3626 | 6352 |

Table 2: number of person instances when separating the benchmarks according to number of present joints and input size.
where $\mathbf{J}_{1}=\left(x_{o}, y_{o}\right), \mathbf{J}_{2}=\left(x_{o}, y_{o}+\frac{w}{2}\right), \mathbf{J}_{3}=\left(x_{o}+\right.$ $\left.\frac{h}{2}, w / 2\right)$, and $\mathbf{J}_{4}=\left(x_{o}+\frac{h}{2}, y_{o}+\frac{w}{2}\right)$. Due to the symmetry of each region, we can also represent the weights $w_{2}$ to $w_{4}$ as an expression of $w, h$ and $C$.

$$
\begin{align*}
w_{2} & =\frac{1}{C} \cdot 2 x_{o}\left(w-2 y_{o}\right) \\
w_{3} & =\frac{1}{C} \cdot 2\left(h-2 x_{o}\right) y_{o}  \tag{7}\\
w_{4} & =\frac{1}{C} \cdot\left(h-2 x_{o}\right)\left(w-2 y_{o}\right)
\end{align*}
$$

We can reformulate Eq. (6) in matrix format:

$$
\left[\begin{array}{c}
x_{r}  \tag{8}\\
y_{r}
\end{array}\right]=\left[\begin{array}{l}
w_{1} x_{o}+w_{2} x_{o}+w_{3}\left(x_{o}+\frac{h}{2}\right)+w_{4}\left(x_{o}+\frac{h}{2}\right) \\
w_{1} y_{o}+w_{2}\left(y_{o}+\frac{w}{2}\right)+w_{3} y_{o}+w_{4}\left(y_{o}+\frac{w}{2}\right)
\end{array}\right]
$$

Substituting the weights from Eq. (7) into Eq. (8) and with the knowledge that $w_{1}=1-w_{2}-w_{3}-w_{4}$, we arrive at the following linear equation:

$$
\mathbf{J}^{r}=\left[\begin{array}{l}
x_{r}  \tag{9}\\
y_{r}
\end{array}\right]=\left[\begin{array}{l}
\left(1-\frac{h w}{C}\right) x_{o}+\frac{h w}{C} \frac{h}{2} \\
\left(1-\frac{h w}{C}\right) y_{o}+\frac{h w}{C} \frac{w}{2}
\end{array}\right]
$$

Even though we began our derivation with $\left(x_{o}, y_{o}\right)$ being located in $\Omega_{1}$ which is in the upper left quadrant, Eq. (9) is equally applicable when $\left(x_{o}, y_{o}\right)$ is located in the other three quadrants. If we look at the Eq. (9), if $x_{o}<\frac{h}{2}$, then $x_{r}>x_{o}$ which pushes the coordinate to move towards the center. If

|  | Few kpts | some kpts | many kpts | all |
| :--- | :---: | :---: | :---: | :---: |
| Many occ | 167 | 149 | 52 | 368 |
| some occ | 182 | 584 | 602 | 1368 |
| few occ | 585 | 1059 | 2972 | 4616 |
| all | 934 | 1792 | 3626 | 6352 |

Table 3: number of person instances when separating the benchmarks according to number of present joints and percentage of occlusions.

| D/R/S | Few kpts | some kpts | many kpts |
| :--- | :---: | :---: | :---: |
| Many occ | $32.0 / \mathbf{2 8 . 1} / 28.2$ | $23.7 / 22.8 / \mathbf{2 2 . 2}$ | $27.1 / 24.3 / \mathbf{2 3 . 8}$ |
| some occ | $16.0 / 14.8 / \mathbf{1 4 . 4}$ | $6.88 / 7.00 / \mathbf{6 . 8 6}$ | $6.78 / 7.18 / \mathbf{6 . 6 2}$ |
| few occ | $16.6 / 15.2 / \mathbf{1 4 . 3}$ | $8.36 / 8.53 / 7.08$ | $4.91 / 5.22 / \mathbf{4 . 8 4}$ |

Table 4: Comparison of EPE of our method with detection and regression based method on sub benchmarks divided by our proposed method on COCO validation set.
$x_{o}>\frac{h}{2}$, then $x_{r}<x_{o}$ which also make the prediction to be closer to the center. $y_{o}$ is same as $x_{o}$. Therefore, this equation is applicable to all quadrants.

Therefore, we can predict $\mathbf{J}^{o}$ from $\mathbf{J}^{r}$ in closed form as follows:

$$
\mathbf{J}^{r o}=\left[\begin{array}{l}
x_{0}  \tag{10}\\
y_{0}
\end{array}\right]=\left[\begin{array}{l}
\frac{C}{C-h w} x_{r}-\frac{h w^{2}}{2(C-h w)} \\
\frac{C}{C-h w} y_{r}-\frac{h^{2} w}{2(C-h w)}
\end{array}\right],
$$

which is the result in the main paper.

## B. Experiment Details

We report the experiment results of HRNet [2]'s performance on different sub-benchmarks in Table 1.

We report the number of person instances in each sub benchmarks divided by the proposed factors on COCO [1] validation set in Table 2 and Table 3.

We also report the detailed EPE of our method on the divided sub benchmarks in Table 4 to support the Fig. 5 in the main paper.

## References

[1] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, pages 740-755. Springer, 2014. 2
[2] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep highresolution representation learning for human pose estimation. In CVPR, pages 5693-5703, 2019. 2

