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We present the detailed derivation of the bias and some
details about experiments. Note that all the notation and
abbreviations here are consistent with the main paper.

A. Derivation of Bias
As defined in the main paper, we obtain the normalized

heatmap by soft-argmax function as follows:

H̃(p) =
exp(β ·H(p))∑

p′∈Ω exp(β ·H(p′))
, β > 0, (1)

where H(p) is the heatmap output of the network and in-
dexed by pixel p over the range of pixels Ω. For conve-
nience, we further define a variable C as the denominator
of Eq. (1):

C =
∑
p′∈Ω

exp(β ·H(p′)). (2)

We can further partition the heatmap’s pixels Ω into four
sections {Ω1,Ω2,Ω3,Ω4} as visualized in Fig. 1. Ω1 is de-
fined such that the true joint location (xo, yo) is the expected
value and center of the section. The key assumption that we
make in our work is that the heatmap support for the true
joint location (xo, yo) is well localized and fully contained
within Ω1 in H. As such, the sections Ω2 to Ω4 contain only
zero or near-zero elements so we can approximate Eq. (1)
for the four sections as follows:

H̃(p) ≈

{
1
C · exp(βkH(p)) for p ∈ Ω1

1
C for p ∈ {Ω2,Ω3,Ω4}

(3)

where the normalized heat map value approximates to 1/C
for p ∈ {Ω2,Ω3,Ω4}, since the exponential of a zero in the
numerator is simply 1.

The (biased) joint location Jr(xr, yr) is defined as the
expected value of the entire heatmap, which can be further
decomposed into the four sections:

Ω1 Ω2

Ω3 Ω4

Figure 1: Partitioning of heatmap into four sections to esti-
mate the bias. Ω1 is assumed to contain the full support and
is centered at the true joint location (xo, yo), while Ω2, Ω3

and Ω4 are assumed to be (near)-zero values. We illustrate
the heatmap with a Gaussian for visualization purposes, but
our method does not make any assumption on the form or
symmetry of the heatmap density.

Jr =
∑
p∈Ω

H̃(p) · p (4)

=
∑
p∈Ω1

H̃(p) · p +
∑

p∈Ω2,Ω3,Ω4

H̃(p) · p. (5)

We can also view Jr = (xr, yr) as a weighted sum of
the expected location of each section:

Jr = w1J1 + w2J2 + w3J3 + w4J4,

where wk =
∑
p∈Ωk

H̃(p), for k = 1, 2, 3, 4 (6)



De/Re Few kpts some kpts many kpts all

Many occ 28.5/26.6 14.1/13.3 14.2/14.7 16.8/16.6

some occ 22.2/20.5 6.72/6.93 7.18/7.20 8.27/8.20

few occ 26.9/26.4 7.19/7.38 5.12/5.29 5.78/5.95

all 25.8/24.1 7.98/8.10 6.74/6.93 8.09/8.14

Table 1: HRNet - Comparisons about EPE on COCO val-
idation set. De and Re refers to detection and regression
method respectively.

Few kpts some kpts many kpts all

M 401 794 1218 2413

L 174 327 747 1248

XL 103 187 492 782

XXL 256 484 1169 1909

all 934 1792 3626 6352

Table 2: number of person instances when separating the
benchmarks according to number of present joints and input
size.

where J1 = (xo, yo), J2 = (xo, yo + w
2 ), J3 = (xo +

h
2 , w/2), and J4 = (xo + h

2 , yo + w
2 ). Due to the symmetry

of each region, we can also represent the weights w2 to w4

as an expression of w, h and C.

w2 =
1

C
· 2xo(w − 2yo),

w3 =
1

C
· 2(h− 2xo)yo,

w4 =
1

C
· (h− 2xo)(w − 2yo).

(7)

We can reformulate Eq. (6) in matrix format:

[
xr
yr

]
=

[
w1xo + w2xo + w3(xo + h

2 ) + w4(xo + h
2 )

w1yo + w2(yo + w
2 ) + w3yo + w4(yo + w

2 )

]
.

(8)
Substituting the weights from Eq. (7) into Eq. (8) and with
the knowledge that w1 = 1−w2−w3−w4, we arrive at the
following linear equation:

Jr =

[
xr
yr

]
=

[
(1− hw

C )xo + hw
C

h
2

(1− hw
C )yo + hw

C
w
2

]
. (9)

Even though we began our derivation with (xo, yo) being
located in Ω1 which is in the upper left quadrant, Eq. (9) is
equally applicable when (xo, yo) is located in the other three
quadrants. If we look at the Eq. (9), if xo < h

2 , then xr > xo
which pushes the coordinate to move towards the center. If

Few kpts some kpts many kpts all

Many occ 167 149 52 368

some occ 182 584 602 1368

few occ 585 1059 2972 4616

all 934 1792 3626 6352

Table 3: number of person instances when separating the
benchmarks according to number of present joints and per-
centage of occlusions.

D/R/S Few kpts some kpts many kpts

Many occ 32.0 / 28.1/28.2 23.7 / 22.8/22.2 27.1 / 24.3/23.8

some occ 16.0 / 14.8/ 14.4 6.88/ 7.00/6.86 6.78 / 7.18/6.62

few occ 16.6 / 15.2/14.3 8.36 / 8.53/7.08 4.91 / 5.22/4.84

Table 4: Comparison of EPE of our method with detection
and regression based method on sub benchmarks divided by
our proposed method on COCO validation set.

xo >
h
2 , then xr < xo which also make the prediction to

be closer to the center. yo is same as xo. Therefore, this
equation is applicable to all quadrants.

Therefore, we can predict Jo from Jr in closed form as
follows:

Jro =

[
x0

y0

]
=

[
C

C−hwxr −
hw2

2(C−hw)
C

C−hwyr −
h2w

2(C−hw)

]
, (10)

which is the result in the main paper.

B. Experiment Details
We report the experiment results of HRNet [2]’s perfor-

mance on different sub-benchmarks in Table 1.
We report the number of person instances in each sub

benchmarks divided by the proposed factors on COCO [1]
validation set in Table 2 and Table 3.

We also report the detailed EPE of our method on the
divided sub benchmarks in Table 4 to support the Fig. 5 in
the main paper.
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