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Abstract

In the main paper we introduced a new probabilistic
approach for event alignment. We show new state-of-the-
art results based on several different error measures such
as the RMS-error or the absolute angular error. Here we
support this analysis by showing additional visual results
indicating the high quality of our new proposed method.
Secondly we provide a more theoretical background of our
model justifying the likelihood function of observed event
data. The observed event data is defined through the map-
ping (x, t) 7→ (Rt

ωx, t), where Rω defines the mapping
that is applied to event data. This mapping can be for-
mally justified via the Poisson mapping theorem, which is
discussed here. Along with this pdf-document we provide
code of our algorithm including a demo that aligns a batch
of 30k events.

1. Visual results for velocity estimation
1.1. Angular Velocity

In Figure 2 we show the accuracy of our estimated
velocity compared to the next best performing method
(EMin [4]) and ground truth (IMU). Taking the sequence
boxes rotation as an example we show the estimated an-
gular velocities over the entire sequence (60sec) as well as
over a shorter duration (0.05sec) for each axis of rotation.
Even during peak velocities with around 380 deg/sec esti-
mates obtained by our method are robust and outperform
previous results from [4] (Figure 2(d)).

Constant velocity assumption within a fixed event batch.
Event alignment of a fixed batch of events (e.g., 30k) is typ-
ically done via assuming a constant velocity during the time
span of the events. However, such a time span is a variable
that depends on the amount of texture in the scene and mo-

Figure 1. Event batch size vs. accuracy. Accuracy measured in
terms of RMS error (deg/sec) for different event batch sizes to
process the four rotational sequences from dataset [3].

tion of the camera. A possible fix to this issue is to use an
adaptive number of events, depending on texture [2]. How-
ever this makes comparisons more difficult to interpret.

In Figure 1 we show for each sequence the accuracy
reached for a specific batch size of events. We vary the
batch size between 5k and 40k events. While the three se-
quences boxes, poster and dynamic show relatively realistic
scenes, the shapes sequence shows just a few black shapes
posted onto a white background. Due to this rather simple
texture much fewer events are generated within the same
time interval. Conversely, a fixed number of 30k events
spans over a much larger time interval, with possibly high
variation in motion. If the batch size of events is too large,
the constant velocity assumption leads to a significant drop
in performance. As one can see in Figure 1 velocity estima-
tions based on fewer events are significantly more suitable
for the shape sequence.

1.2. Linear Velocity

Figure 3 shows the accuracy of EMin [4], CMax [1] and
ours compared to ground truth for the boxes translation se-



quence. Ground truth is taken from a motion capture sys-
tem. EMin trying to minimize the pairwaise entropy among
all event-event pairs suffers a lot from global minima which
are reached for large Z-motions. In this case all events are
mapped onto a single point, which is the focus of expansion
of the camera. Besides being more robust to outliers it is
visible that our new proposed method is also more accurate
(see Figure 3(b), 3(d) and 3(f)).

2. Model - Additional Theoretical Background
In this section, we elaborate on the definition of the like-

lihood pO(O|ω) = pA(Rω(A)) as an instance of the Pois-
son mapping theorem. We use qA and qO to represent the
density of point sets under Poisson processes, to distinguish
from the notation pA and pO used in the main text for the
probability of the resultant event counts.

2.1. Density of aligned events A

Recall that the aligned eventsA are distributed according
to a Poisson process on X × [0,∆T ] with intensity function
λ(x, t)

.
= ∆T−1λx; the factor ∆T−1 adjusts for the time

interval so that kx ∼ Pois(λx), where kx is the number of
events observed at pixel x over the interval [0,∆T ].

The density of the point set A =
[(ax1 , a

t
1), . . . , (axN , a

t
N )] is [5]

qA(A) = exp
(
−
∑
x∈X

∫ ∆T

0

λ(x, t)dt
) N∏

i=1

λ(axi , a
t
i) (1)

= exp
(
−
∑
x∈X

λx

) N∏
i=1

∆T−1λax
i

(2)

= ∆T−N
∏
x∈X

λkx
x exp(−λx). (3)

In the second line, we used
∫∆T

0
λ(x, t)dt =∫∆T

0
∆T−1λxdt = λx. In the third line, we grouped

events with axi = x. These simplifications are possible
because space is discrete and the intensity function is
homogeneous with respect to time.

Observe that the probability pA(A) of the pixel counts
as defined in the main text is related to qA(A) by

pA(A) =
∆TN∏
x kx!

qA(A) =
(∏

x

∆T kx

kx!

)
qA(A). (4)

The extra factor of
∏

x
∆Tkx

kx! comes from integrating over
all possible ordered sets of time indices t1, . . . tkx ∈
[0,∆T ] for the kx points for each pixel x, and then dividing
by kx! to switch from an ordered tuple to an unordered set.

2.2. Density of observed events O

The Poisson mapping theorem describes what happens
when the points of a Poisson process are mapped by a de-

terministic mapping: the result is a new Poisson process
with modified intensity function. Let ft be the ground-truth
mapping from reference coordinates to camera coordinates
at time t. Assume for now that ft is a bijection on X for
all t, as is the case for rotations. We discuss relaxations of
this assumption below. Let S be the joint mapping on space
and time that sends (x, t) to (ft(x), t), so the ith observed
event is obtained from the ith aligned event as oi = S(ai).
By the Poisson mapping theorem, the observed point set
O = S(A)

.
= [S(a1), . . . , S(an)] is distributed according

to a Poisson process with intensity function

λ′(x, t) = λ
(
S−1(x, t)

)
= λ

(
f−1
t (x), t

)
(5)

= ∆T−1λf−1
t (x). (6)

In more general settings, a Jacobian term is required to ad-
just for changes of volume. In our case, it is not needed
because the spatial coordinate is discrete, and the time co-
ordinate mapping is the identity, which has unit Jacobian.

The density of the mapped point set O is therefore

qO(O) = exp
(
−
∑
X

∫ ∆T

0

λ′(x, t)dt
) N∏

i=1

λ′(oxi , o
t
i)

(7)

= exp
( ∑
x∈X

λx
) N∏
i=1

∆T−1λf−1
t (oxi ) (8)

= qA
(
S−1(O)

)
(9)

In the second line, we used
∑

x∈X λf−1
t (x) =

∑
x∈X λx,

which follows because ft is a bijection.
By aggregating to counts in the same manner described

above, we obtain the result used in the main text:

pO(O) = pA
(
S−1(O)

)
. (10)

Our method parameterizes the inverse mapping (i.e. from
observed events to aligned ones) as S−1 ≈ Rω , so that
pO(O|ω) = pA

(
Rω(O)

)
.

Changes of volume. When the camera movement is a ro-
tation, it is true that the mapping ft is a bijection on the
discrete pixel set X . For more general motions, even if
the underlying continuous mapping is bijective, the discrete
mapping may fail to be so because volume is not preserved,
causing source pixels to stretch or compress so that many
or no source pixels maps to a particular destination pixel
x. The derivation above then becomes ambiguous because
the inverse image f−1

t (x) may be a set of any size, includ-
ing zero. The ambiguity can be resolved cleanly whenever
the underlying continuous mapping is bijective by describ-
ing the entire point process in continuous spatial coordi-
nates and correcting for the change of volume by the usual



(a) Angular velocity around x-axis: full sequence (60sec)

(b) Zoomed-in plots of corresponding bounded regions

(c) Angular velocity around y-axis: full sequence (60sec)

(d) Zoomed-in plots of corresponding bounded regions

(e) Angular velocity around z-axis: full sequence (60sec)

(f) Zoomed-in plots of corresponding bounded regions

Figure 2. Angular velocity estimates measured in deg/sec plotted versus ground truth (IMU). Example boxes rotation. Comparison to the
next best performing method (EMin).



(a) Linear velocity around x-axis: full sequence (60sec)

(b) Zoomed-in plots of corresponding bounded regions

(c) Linear velocity around y-axis: full sequence (60sec)

(d) Zoomed-in plots of corresponding bounded regions

(e) Linear velocity around z-axis: full sequence (60sec)

(f) Zoomed-in plots of corresponding bounded regions

Figure 3. Linear velocity estimates measured in m/s plotted versus ground truth from motion capture system. Example sequence
boxes translation. Comparison to EMin [4], CMax [1] and ground truth.



change-of-variables formula involving the determinant of
the Jacobian. We leave this direction for future work. In
our experiments with translations (non-volume-preserving
mapping) we simply transform pixel coordinates of events,
ignoring the change of area due to translations along the Z
camera axis (stretching, compressing transformations).

3. Code
Along with this supplementary material we provide code

including a demo script, that runs the alignment on a small
example sequence of 30k events. The code requires python3
and can be run optionally using GPU. More details re-
garding executing the code can be found in the README
going with the code. Code: https://github.com/
pbideau/Event-ST-PPP
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