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1. Geometric Constraints from ACs
For AC (xij ,x

′
ij ,A), we get three polynomials for six

unknowns {qx, qy, qz, tx, ty, tz} from Eqs. (4) and (9) in
the paper. After separating qx, qy , qz from tx, ty , tz , we
arrive at equation system
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 = 0,

(1)

where the elements Mij (i = 1, . . . , 3; j = 1, . . . , 4) of the
coefficient matrix M(qx, qy, qz) are formed by the polyno-
mial coefficients and three unknown variables qx, qy, qz:

M(qx, qy, qz) =

[2] [2] [2] [2]
[2] [2] [2] [2]
[2] [2] [2] [2]

 , (2)

where [N ] denotes a polynomial of degree N in variables
qx, qy, qz .

Equation (1) imposes three independent constraints on
six unknowns {qx, qy, qz, tx, ty, tz}. This constraint can be
easily generalized to special cases of multi-camera motion,
e.g., planar motion and known vertical direction.

2. Relative Pose Under Planar Motion
2.1. Details about the Coefficient Matrix M(qy)

Refer to Eq. (11) in the paper, three constraints obtained
from a single AC are stacked into three equations in three
unknowns. The elements Mij (i = 1, . . ., 3; j = 1, . . ., 3)

∗Corresponding author.

of the coefficient matrix M(qy) are formed by the polyno-
mial coefficients and one unknown variable qy , which can
be described as:

M(qy) =

[2] [2] [2]
[2] [2] [2]
[2] [2] [2]

 , (3)

where [N ] denotes a polynomial of degreeN in variable qy .

2.2. Degenerate Case
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Figure 1. Planar motion of a multi-camera system.

Proposition 1. Consider a multi-camera system which is
under planar motion. Assume the following three condi-
tions are satisfied. (1) The rotation axis is y-axis, and the
translation is on xz-plane. (2) There is one AC across cam-
era Ci in frame k and camera Cj in frame k + 1 (Ci and
Cj can be the same or different cameras). (3) The optical
centers of camera Ci and Cj have the same y-coordinate.
Then this case is degenerate. Specifically, the rotation can
be correctly recovered, while both the translation direction
and the translation scale cannot be estimated using one AC.

Proof. Figure 1 illustrates the degenerate case described in
the proposition. Note that the multi-camera reference frame
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Methods 17pt-Li [10] 8pt-Kneip [8] 6pt-St. [6] 4pt-Lee [9] 4pt-Sw. [14] 4pt-Liu [11] 6AC-Ven. [1] 1AC plane 2AC plane 2AC vertical
Timings 43.3 102.0 3275.4 26.5 22.2 3.7 38.1 3.6 3.6 17.8

Table 1. Run-time comparison of motion estimation algorithms (unit: µs).

is established on the multi-camera system, not on a certain
camera coordinate system. Our proof is based on the fol-
lowing observation: whether a case is degenerate is inde-
pendent of the relative pose solvers. Based on this point,
we construct a new minimal solver which is different from
the proposed solver in the paper.

(i) Since the multi-camera system is rotated by y-axis,
the camera Ci in frame k and camera Cj in frame k+1 are
under motion with known rotation axis. Thus we can use the
1AC method [5] for perspective cameras to estimate the
relative pose between Ci and Cj . This is a minimal solver
since one AC provides 3 independent constraints and there
are three unknowns (one unknown for rotation, two un-
knowns for translation by excluding scale-ambiguity). De-
note the recovered rotation and translation between Ci and
Cj as (R′, t′), where t′ is a unit vector. The scale of the
translation vector cannot be recovered at this moment. De-
note the unknown translation scale as λ.

(ii) From Fig. 1, we have[
R t
0 1

]
=

[
Rj tj
0 1

] [
R′ λt′

0 1

] [
Ri ti
0 1

]−1
=

[
RjR

′RT
i λRjt

′ + tj −RjR
′RT

i ti
0 1

]
.

(4)

From Eq. (4), we have

R = RjR
′RT

i , (5)

t = λRjt
′ + tj −RjR

′RT
i ti. (6)

From Eq. (5), the rotation R between frame k and frame
k + 1 for the multi-camera system can be recovered. From
Eq. (6), we have

λ(Rjt
′)− t+ (tj −Rti) = 0. (7)

In Eq. (7), note that t = [tx, 0, tz]
T due to planar motion.

Thus this linear equation system has 3 unknowns {λ, tx, tz}
and 3 equations. Usually the unknowns can be uniquely
determined by solving this equation system. However, if
the second entry of Rjt

′ is zero, it can be verified that λ
becomes a free parameter. In other words, the translation
cannot be determined and this is a degenerate case.

(iii) Finally, we exploit the geometric meaning of the de-
generate case, i.e., the second entry of Rjt

′ is zero. Denote
the normalized vector originated from Ci to Cj as v. Since
v represents the normalized translation vector between Ci

and Cj , the coordinates of v in reference of camera Cj is
t′. Further, the coordinates of v in frame k + 1 is Rjt

′.

The second entry of Rjt
′ is zero means that the endpoints

of v have the same y-coordinate in frame k + 1, which is
the condition (3) in the proposition.

3. Relative Pose with Known Vertical Direction
Refer to Eq. (22) in the paper, four constraints obtained

from two ACs are stacked into four equations in four un-
knowns. The elements M̃ij (i = 1, . . ., 4; j = 1, . . ., 4) of
the coefficient matrix M̃(qy) are formed by the polynomial
coefficients and one unknown variable qy , which can be de-
scribed as:

M̃(qy) =


[2] [2] [2] [2]
[2] [2] [2] [2]
[2] [2] [2] [2]
[2] [2] [2] [2]

 , (8)

where [N ] denotes a polynomial of degreeN in variable qy .

4. Experiments
4.1. Efficiency Comparison

The runtimes of the solvers are evaluated on an Intel(R)
Core(TM) i7-7800X 3.50GHz. All algorithms are imple-
mented in C++. Methods 17pt-Li, 8pt-Kneip and
6pt-Stewenius are provided in the OpenGV library [7].
We implemented the 4pt-Lee method. For methods
4pt-Sweeney, 4pt-Liu and 6AC-Ventura, we used
their publicly available implementations from GitHub. The
average, over 10,000 runs, processing times of the solvers
are shown in Table 1. The runtimes of the methods
1AC plane , 2AC plane and 4pt-Liu are the low-
est, because these methods solve the 4-degree polynomial
equation. The 2AC vertical which solves the 6-degree
polynomial equation also requires low computation time.

4.2. Numerical Stability

Figure 2 reports the numerical stability of the
solvers in the noise-free case. The procedure is re-
peated 10,000 times. The empirical probability den-
sity functions (vertical axis) are plotted as the func-
tion of the log10 estimated errors (horizontal axis).
Methods 1AC plane, 2AC plane, 2AC vertical,
17pt-Li[10], 4pt-Lee [9], 4pt-Sweeney [14] and
6AC-Ventura [1] are numerically stable. It can also be
seen that the 4pt-Sweeney method has a small peak,
both in the rotation and translation error curves, around
10−2. The 8pt-Kneip method based on iterative opti-
mization is susceptible to falling into local minima. Due to
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Figure 2. Probability density functions over estimation er-
rors in the noise-free case (10 000 runs). The horizontal
axis represents the log10 errors and the vertical axis repre-
sents the density. (a) reports the rotation error. (b) re-
ports the translation error. The proposed 1AC plane method,
2AC plane method and 2AC vertical are compared against
17pt-Li [10], 8pt-Kneip [8], 6pt-Stewénius [6],
4pt-Lee [9], 4pt-Sweeney [14], 4pt-Liu [11] and
6AC-Ventura [1].

the use of first-order approximation of the relative rotation,
the 4pt-Liu method inevitably has greater than zero error
in the noise-free case.

4.3. Planar Motion Estimation

In addition to efficiency and numerical stability, another
important factor for a solver is the minimal number of re-
quired image points. The iteration number N of RANSAC
can be computed by N = log(1 − p)/ log(1 − (1 − ε)s),
where s is the number of minimal image points, ε is the out-
lier ratio, and p is the success probability. For a probability
of success p = 99%, the RANSAC iterations needed with re-
spect to the outlier ratio needed are shown in Figure 3. It can
be seen that the iteration number of the RANSAC estimator
increases exponentially with respect to the number of image
points needed. For example, in a percentage of outliers ε =
50%, when the solvers require 1, 2, 4, 6, 8 and 17 points, the
RANSAC estimator need 7, 16, 71, 292, 1177 and 603607
iterations, respectively. The proposed 1AC planemethod
which only uses a single AC requires the lowest number
of RANSAC iterations. Since the proposed 2AC plane
method need two ACs, the iteration number of RANSAC
is also low in comparison to PC-based methods. Thus, our
solvers can be used efficiently for detecting a correct inlier
set when integrating them into the RANSAC framework.

We evaluate the performance of the proposed
1AC plane method and 2AC plane method for
outlier detection in presence of outliers. The outlier ratio
is set to 50%. The other configurations of this synthetic
experiment are set as same as using in Figure 3(d–f) in the
paper. Figure 4 shows the performance of the proposed
methods against planar motion noise. It is interesting to
see that the 1AC plane method recovers more than 50%
inliers and requires fewer number of RANSAC iterations,
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Figure 3. Comparison of the RANSAC iteration number for 99%
of success probability.
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Figure 4. Rotation and translation error with varying planar motion
noise. The image noise is fixed at 0.5 pixel and the outlier ratio is
set to 50%.

even though it performs poorly in translation estimation as
shown in Figure 3(e–f) in the paper. Thus, the 1AC plane
method has the advantage of detecting a correct inlier set
efficiently, which can then be used for accurate motion
estimation with non-linear optimization.

4.4. Motion with Known Vertical Direction

In this section we show the performance of the pro-
posed 2AC vertical under forward and sideways mo-
tion. Figure 5 shows the performance of the proposed
2AC vertical under forward motion. It can be seen
that 2AC vertical outperforms the comparative meth-
ods against image noise and provides comparable accuracy
for increasing IMU noise, even though the size of the square
is 20 pixels. Figure 6 shows the performance of the pro-
posed 2AC vertical under sideways motion. The re-
sults demonstrate that when the side length of the square
is 40 pixels, the 2AC vertical performs basically bet-
ter than all compared methods against image noise and
achieves comparable performance for increasing noise on
the IMU data.
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Figure 5. Rotation and translation error under forward motion with
known vertical direction. Upper row: rotation error. Bottom row:
translation error. (a,d): varying image noise. (b,e) and (c,f): vary-
ing IMU angle noise and fixed 1.0 pixel std. image noise.
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Figure 6. Rotation and translation error under sideways motion
with known vertical direction. Upper row: rotation error. Bottom
row: translation error. (a,d): varying image noise. (b,e) and (c,f):
varying IMU angle noise and fixed 1.0 pixel std. image noise.

4.5. Using PCs converted from ACs

In this set of experiments, we evaluate the performance
of PC-based solvers using the PCs converted from ACs.
Given an AC as (x,x′,A), where x and x′ are the image
coordinates of feature point in two views and A is the cor-
responding 2×2 local affine transformation. Three gener-
ated PCs include an image point pair of AC and two hal-
lucinated image point pairs calculated by the local affine
transformation. Since local affine transformations are de-
fined as the partial derivative, w.r.t. the image directions,
of the related homography, they are valid only infinitesi-
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Figure 7. Rotation and translation error with varying image noise
under random motion with known vertical direction. Solid line in-
dicates using image point pairs of ACs. Dashed line, dash-dotted
line and dotted line indicate using the hallucinated PCs, which are
generated with different distribution area w = 1, 5, 10 pixels, re-
spectively.

mally close to the image coordinates of AC. Thereby, one
AC can only provide three approximate PCs the error is not
zero even for noise-free input [2]. Three approximate PCs
converted from one AC can be computed as follows [3]:
x + [0, w, 0; 0, 0, w] and x′ + A[0, w, 0; 0, 0, w],
where w determines the distribution area of the generated
PCs. To evaluate the performance of PC-based solvers with
different distribution area, w is set to 1, 5 and 10 pixels,
respectively.

Take relative pose estimation with known vertical di-
rection for an example. A total of 1000 trials are
carried out in the synthetic experiment. In each test,
100 ACs are generated randomly with 40*40 support re-
gion. In the RANSAC loop, six ACs and two ACs
are selected randomly for the 6AC-Ventura method
and the proposed 2AC vertical method, respectively.
The hallucinated PCs converted from a minimal num-
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Part
17pt-Li [10] 8pt-Kneip [8] 6pt-St. [6] 4pt-Lee [9] 4pt-Sw. [14] 4pt-Liu [11] 6AC-Ven. [1] 2AC plane 2AC vertical
εR εt εR εt εR εt εR εt εR εt εR εt εR εt εR εt εR εt

01 (3376 images) 0.161 2.680 0.156 2.407 0.203 2.764 0.083 1.780 0.078 1.659 0.108 1.941 0.143 2.366 0.344 2.284 0.057 1.469

Table 2. Rotation and translation error on nuScenes sequences (unit: degree).

ber of ACs are used as input for the PC-based solvers.
Thus, 6, 3 and 2 ACs are selected randomly for
the 17pt-Li solver [10], the 8pt-Kneip solver [8],
and the solvers 6pt-Stewénius [6], 4pt-Lee [9],
4pt-Sweeney [14] and 4pt-Liu [11], respectively.
Note that the hallucinated PCs converted from ACs are only
used for hypothesis generation, and the inlier set is found by
evaluating the image point pairs of ACs. The solution which
produces the highest number of inliers is chosen. The other
configurations of this synthetic experiment are set as same
as using in Figure 4(a) and (d) in the paper.

Figure 7 shows the performance of the PC-based solvers
against image noise in the random motion case. The esti-
mation results using the image point pairs of ACs are rep-
resented by solid lines. The estimation results using the
hallucinated PCs generated with different distribution area
are represented by dashed line (w = 1 pixel), dash-dotted
line (w = 5 pixels) and dotted line (w = 10 pixels), re-
spectively. We have the following observations. (1) The
PC-based solvers using the hallucinated PCs perform worse
than using the image point pairs of AC. Because the con-
version error between each AC and three PCs is newly in-
troduced. It can be seen that the estimation error of PC-
based solvers using the hallucinated PCs is not zero even
for image noise-free input. Moreover, the hallucinated PCs
generated by each AC are near each other which may be
a degenerate case for the PC-based solvers. (2) The per-
formance of PC-based solvers is influenced by the different
distribution area of hallucinated PCs. Since a smaller dis-
tribution area causes smaller conversion error between ACs
and PCs, the PC-based solvers have better performance with
smaller distribution area. (3) The performance of the pro-
posed 2AC vertical method is best. Because the AC-
based solvers use the relationship between local affine trans-
formations and epipolar lines (Eq. (9) in the paper). This is
a strictly satisfied constraint and does not result in any er-
ror for noise-free input. In addition, the 2AC vertical
method is robust to image noise and performs better than
the 6AC-Ventura method.

4.6. Experiments on KITTI dataset

We also show the empirical cumulative error distribu-
tions for KITTI sequence 00. These values are calculated
from the same values which were used for creating Table 2
in the paper. Figure 8 shows the proposed 2AC vertical
method offers the best overall performance in comparison to
state-of-the-art methods.
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Figure 8. Empirical cumulative error distributions for KITTI se-
quence 00. (a) reports the rotation error. (b) reports the translation
error. The proposed 2AC plane method and 2AC vertical
are compared against 17pt-Li [10], 8pt-Kneip [8],
6pt-Stewénius [6], 4pt-Lee [9], 4pt-Sweeney [14] and
4pt-Liu [11].

To visualize the comparison results, the estimated tra-
jectory for sequence 00 is plotted in Fig. 9. We are di-
rectly concatenating frame-to-frame relative pose measure-
ments without any post-refinement. The trajectory for
2AC vertical is compared with the two best perform-
ing comparison methods in sequence 00 based on Table
2 in the paper: 8pt-Kneip in 6DOF motion case and
4pt-Sweeney in 4DOF motion case. Since all methods
were not able to estimate the scale correctly, in particular
for the many straight parts of the trajectory, the ground truth
scale is used to plot the trajectories. Then the trajectories are
aligned with the ground truth and the color along the trajec-
tory encodes the absolute trajectory error (ATE) [13]. Even
though all trajectories have a significant accumulation of
drift, it can still be seen that the 2AC vertical method
has the smallest ATE among the compared trajectories.

4.7. Experiments on nuScenes dataset

We also test the performance of our methods on the
nuScenes dataset [4], which consists of consecutive
keyframes from 6 cameras. All the keyframes of Part 1
are used for the evaluation and there are 3376 images in
total. The ground truth pose is provided from a lidar map-
based localization scheme. Similar to the experiments on
KITTI dataset, the ACs between consecutive keyframes in
each camera are established by applying the ASIFT [12] de-
tector. All solvers are used within RANSAC.

Table 2 shows the results of the rotation and translation
estimation for the Part1 of nuScenes dataset. The median
error is used to evaluate the estimation accuracy. It can be
seen that the proposed 2AC vertical method offers the
best overall performance among all the methods.
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Figure 9. Estimated trajectories without any post-refinement. The relative pose measurements between consecutive frames are directly
concatenated. The colorful curves are the trajectories estimated by 8pt-Kneip [8], 4pt-Sweeney [14] and 2AC vertical. Black
curves with stars are the ground truth trajectories. Best viewed in color.
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