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In this supplementary material, we present additional de-
tails, statistics and examples for the BnB dataset; we discuss
implementation details for the models used in our work; and
present qualitative results as well as the detailed results for
the new few-shot learning paradigm.

A. BnB dataset

This section presents additional details for our Bed-and-
Breakfast (BnB) dataset. We start by a short discussion
of image-caption pairs (BnB IC) collected from an on-
line rental marketplaces and their statistics. Subsequently,
we present how a combinatorially large number of path-
instruction pairs (BnB PI) can be created automatically. We
end this section with multiple examples of BnB PI pairs
generated via the concatenation and domain-shift reduction
(e.g. rephrasing, captionless insertion) strategies.

A.1. Filtering image-caption pairs: Outdoor images

Images of outdoor scenes are almost never seen in the
environments used in downstream VLN tasks. In fact, not
only are the images out-of-domain (such images are rarely
seen in the VLN environments), their captions are often ir-
relevant to a VLN task. In order to alleviate the impact of
such noisy images and captions, we discard outdoor images
from the pretraining process. Figure 1 illustrates several
examples of misleading outdoor image-caption pairs. Cap-
tions as written by the host are presented in the label below
the image. The caption for the image in Figure 1a refers
to a “bedroom”, however, the image does not show a bed-
room. Similarly, the image-caption pair in the Figure 1b
talks about activities or festivals that take place in the neigh-
borhood of the listing, however, they are not relevant for
solving indoor navigation tasks. Finally, Figure 1c shows
an outdoor scene with several birds along with a noisy cap-
tion that is not directly related to the image content, but the
emotion that the image may evoke.

A.2. Dataset details and Statistics

BnB image-caption pairs. We collect BnB IC pairs from
150K listings on Airbnb resulting in 713K image-caption
pairs and 676K images without captions. In Figure 2,
we present some key statistics about this data. Figure 2a
presents a histogram of the number of images found in each
listing. While most listings have less than 20 images, this
is still a sufficiently large and diverse in-domain distribu-
tion. In Figure 2b, we summarize the rooms depicted in the
images through predicted category labels obtained using a
CNN trained on the Places365 dataset [13]. These category
labels are used as part of our proposed extensions such as
image merging.

Creating BnB path-instruction pretraining samples. We
create the BnB PI pairs on-the-fly during training to mimic
the agent’s visual trajectory and a corresponding instruction
through an environment. Each sample in a batch is created
by randomly sampling a listing without replacement dur-
ing an epoch (one epoch consists of one PI pair from each
listing). Then, the number of IC pairs K that form the PI
pair are chosen (as an integer) from a uniform distribution,
K ∼ U [4, 7]. We sample N ∼ U [2,K] IC pairs that have
a non-empty caption and the remainder K −N images are
chosen from the set of captionless images. Any image in the
path may include additional visual context (from the same
room) via the image merging strategy. Similarly, the in-
struction rephrasing strategy may be employed by using ex-
isting R2R instruction templates and filling them with noun
phrases extracted from the image captions.

The above procedure results in creating one correctly
aligned (positive) PI pair, (X+ in the main paper). To em-
ploy the shuffling loss for each sample, we create 9 addi-
tional negatives (X−

n in the paper) by shuffling either the
sequence of images or captions, ensuring that the post-
shuffling order does not align with the positive pair.

Statistics for BnB PI pairs. Due to the large number of
possible combinations, we can (theoretically) create 200
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(a) Gorgeous ocean views from bedroom. (b) Main stage (c) Spring excitement

Figure 1: Examples of outdoor images with their corresponding captions.
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(a) Distribution of the number of images per listing.
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(b) Distribution of predicted scene categories on BnB images.
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(c) Fill-in-the-blanks templates built using the R2R training set.
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(d) Distribution of the instruction lengths.

Figure 2: Statistics of BnB Dataset.

billion path-instruction pairs, using the simple concatena-
tion strategy. This number grows to over 300 quadrillion
when considering additional visual context augmentations
and fluent instructions.

For instruction rephrasing, we create 11,626 fill-in-the-
blank templates from the R2R training set. Figure 2c shows
the distribution of the number of blanks in the templates –
most instruction templates have 2-7 blanks into which we

insert noun phrases from the BnB captions.

While we are unable to generate the entire BnB PI
dataset for computing statistics, we generate 50K PI pairs
as a representative sample. Figure 2d presents the distribu-
tion of instruction lengths (number of words) for different
datasets. We see that the captions in BnB IC pairs are much
shorter than typical instructions in R2R and REVERIE,
while our automatically created instructions in BnB PI pairs



exhibit a high level of similarity in terms of their length.

A.3. Examples of BnB PI Pairs

Figure 3 presents generated BnB PI pairs using various
strategies proposed in our work, including naive concatena-
tion, instruction rephrasing, instruction generation, image
merging and captionless image insertion.

Among the methods to create an instruction, simple con-
catenation lacks action verbs between sentences for fluent
transition leading to a domain shift from real instructions.
Instruction rephrasing selects noun phrases from BnB im-
age descriptions and inserts them into real instruction tem-
plates, providing a natural feel to the created instruction.
Finally, while the learning approach of instruction gener-
ation (recall, this is learned on downstream VLN dataset)
produces fluent sentences, it is unable to leverage the di-
verse captions of BnB images due to the limited vocabulary
stemming from the downstream VLN dataset. For example,
the generated instruction in Figure 3c does not contain noun
phrases related to images in the path. Better caption gener-
ation models such as Pointer network [12] may help avoid
such problems, however are left for future work.

Among augmentations for path generation, we can see
that image merging helps to expand relevant visual context
from single images to semi-panoramic views, see the bed-
room in Figure 3a or the kitchen in Figure 3b. Captionless
image insertion also improves the path diversity by mim-
icking unmentioned viewpoints in the instruction (indicated
by images with a dotted border).

B. Implementation details
We present the implementation details for learning Air-

bert via pretraining using BnB, and subsequent fine-tuning
in both discriminative or generative settings.

B.1. Airbert Pretraining

Airbert’s architecture is the same as VLN-BERT (see
Figure 4a where the number of layers L1 = L2 = 6). The
feature vector vki (corresponding to ith image region of the
kth image) is composed of three terms: the first term is the
visual feature extracted by the Bottom-Up Top-Down atten-
tion model [1]; the second term encodes the location of the
region in the image as MLP(lki ), where lki is the 5-dim lo-
cation vector of the given image region defined as the top
corner (x, y), the width, height and area; and the last term
Emb(k) encodes the position, where Emb is an embedding
layer for the image order.

We use 8 V100 SXM2 GPUs (32 GB each) for pretrain-
ing Airbert. The model is trained for 15 epochs with a batch
size of 64 and learning rate of 4×10−5. Each epoch consists
of one randomly sampled PI pair from 95% of the listings,
while the remaining 5% are used for validation and prevent-
ing overfitting.

B.2. Fine-tuning in Discriminative Setting

In the discriminative setting, R2R navigation is formu-
lated as a path selection problem given the instruction. The
pretrained Airbert model can be directly fine-tuned with-
out any modifications to the architecture to predict the path-
instruction alignment (or compatibility) score as shown in
Figure 4a.

We follow the same fine-tuning setup as VLN-BERT [9]
to allow for a fair comparison. We use the Adam optimizer
with a learning rate of 4 × 10−5. The optimizer is con-
trolled by a learning rate scheduler with a linear warmup
and cooldown. We fine-tune Airbert for 30 epochs with a
batch size of 64. Samples from the R2R training set are used
for fine-tuning and the model checkpoint with the highest
success rate on the unseen validation set (val unseen) is se-
lected for the test set and leaderboard submission.

B.3. Fine-tuning in Generative Setting

In the generative setting, an agent is required to predict
navigable actions step by step. We adopt the state-of-the-
art generative model Recurrent VLN-BERT [6] for R2R
and REVERIE tasks. The model uses a pretrained multi-
modal transformer as a backbone and adds recurrence to
a state token to keep track of history for sequential action
prediction. Although the original Recurrent VLN-BERT
model only implements an LXMERT-like [10] architecture
PREVALENT [5], and one-stream BERT-like architecture
OSCAR [8], it is easy to plug our two-stream ViLBERT ar-
chitecture as the backbone.

The adapted model is shown in Figure 4b. For initializa-
tion, the language stream is used to encode the instruction
C into an instruction representation H . As no visual inputs
are used during the initialization, the co-attention modules
in the original language stream of ViLBERT are removed,
and the output feature of the [CLS] token is used as the
agent’s initial state s0. For navigation at each step k, the
visual stream takes the previous state sk−1, visual observa-
tions Vk at step k and the encoded language features H to
generate a new state sk and action decision pk.

When fine-tuning on the R2R dataset, we use scene fea-
tures with a ResNet-152 pretrained on Places365 [13] and
augment the training data with generated path-instruction
pairs from [5]. We train the model via imitation learning
and A2C reinforcement learning for 300,000 iterations with
a batch size of 16 and learning rate of 10−5. When fine-
tuning on the REVERIE dataset, object features encoded by
a Bottom-Up Top-Down attention model [1] are used along
with the scene features. The model is trained for 200,000 it-
erations with a batch size of 8. All the experimental setups
for fine-tuning are the same as [6] for a fair comparison.



Concatenation: extra guest room with comfy full bed on top floor of house and top floor shared bathroom for both guest rooms then 
adjoining modern private bath with stall shower bath and beach towels provided then granny's treasures add a homey touch
Instruction rephrasing: exit extra guest room and turn left. pass top floor shared bathroom then turn right. walk toward a homey touch 
and wait there.
Instruction generation: walk to the other side of the bathroom and stop next to the last corner on the wall with the candles.

(a) Example 1

Concatenation: full bath and open floor plan living opens to deck, kitchen / dining area
Instruction rephrasing: go around full bath, then open floor plan living down to kitchen / dining area.
Instruction generation: walk into the bathroom and turn right. walk to the end of the landing and turn left. walk into the sitting area and 
turn right. walk past the chair and stop.

(b) Example 2

(c) Example 3

Figure 3: Examples of path-instruction pairs created by different strategies. The images with dotted borders are images chosen from the
captionless image insertion strategy, and the clustered images are from the image merging strategy.

C. Results
In this section, we present additional results on adapt-

ing Airbert to a generative setting and applying it to the
R2R task. Through several qualitative examples, we ob-
tain a better understanding for Airbert’s performance im-
provements, and finally present detailed results on the new
few-shot learning paradigm in VLN.

C.1. Results on R2R with Generative Models

Table 1 shows the performance of different genera-
tive models on the R2R dataset. The OSCAR and ViL-
BERT backbones for Recurrent VLN-BERT [6] (Rec) are
all pretrained on large-scale out-of-domain image-caption
pairs with object features and similar self-supervised tasks.
On the other hand, the PREVALENT [5] backbone is pre-
trained on in-domain R2R dataset with scene features and
fine-tuned with an additional action prediction task. We sus-
pect that this is the reason for PREVALENT’s higher per-

formance as compared to using OSCAR or VLN-BERT as
backbones. Note that our Airbert backbone is not fine-tuned
further on downstream tasks after pretraining.

Replacing OSCAR’s single BERT-like architecture with
the ViLBERT architecture slightly improves the perfor-
mance (similar to our results on the REVERIE dataset pre-
sented in the main paper). The VLN-BERT model further
fine-tunes ViLBERT on the R2R dataset (with the masking
loss). This is beneficial to the navigation performance on
the unseen environments validation set1. Our Airbert ini-
tialization achieves substantial performance improvement
as compared to the OSCAR and VLN-BERT backbones on
unseen environments, while achieving comparable perfor-
mance with the PREVALENT initialization.

1The performance of VLN-BERT on the seen validation set is lower
because the model checkpoint is selected to maximize performance on val-
idation unseen set which happens to be at an earlier iteration.
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(a) Adapting Airbert to a discriminative setting to predict path-instruction alignment score, similar to [9].
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(b) Adapting Airbert to a generative setting based on the Recurrent VLN-BERT [6].

Figure 4: The adapted Airbert model in both discriminative and generative settings for downstream VLN tasks.

Methods
Validation Seen Validation Unseen Test Unseen

TL NE SR SPL TL NE SR SPL TL NE SR SPL

Seq2Seq-SF [2] 11.33 6.01 39 - 8.39 7.81 22 - 8.13 7.85 20 18
Speaker-Follower [4] - 3.36 66 - - 6.62 35 - 14.82 6.62 35 28
PRESS [7] 10.57 4.39 58 55 10.36 5.28 49 45 10.77 5.49 49 45
EnvDrop [11] 11.00 3.99 62 59 10.70 5.22 52 48 11.66 5.23 51 47
PREVALENT [5] 10.32 3.67 69 65 10.19 4.71 58 53 10.51 5.30 54 51
Rec (no init. OSCAR) [6] 9.78 3.92 62 59 10.31 5.10 50 46 11.15 5.45 51 47
Rec (OSCAR) [6] 10.79 3.11 71 67 11.86 4.29 59 53 12.34 4.59 57 53
Rec (PREVALENT) [6] 11.13 2.90 72 68 12.01 3.93 63 57 12.35 4.09 63 57

Rec (ViLBERT) 11.16 2.54 75 71 12.44 4.20 60 54 - - - -
Rec (VLN-BERT) 10.95 3.37 68 64 11.33 4.19 60 55 - - - -
Rec (Airbert) 11.09 2.68 75 70 11.78 4.01 62 56 12.41 4.13 62 57

Table 1: Navigation performance of different generative models on the R2R dataset.

C.2. Qualitative results

We visualize the predicted paths from VLN-BERT and
Airbert models. In the following figures, l is the starting
viewpoint of the agent, n denotes viewpoints in the ground-
truth path, n for VLN-BERT and n for Airbert. Arrows
indicate the navigation direction.

New houses. In Figure 5, we compare predicted paths from
VLN-BERT and Airbert in new houses beyond the train-
ing environments. Benefiting from BnB dataset that pro-
vides diverse visual environments in pretraining, our Air-
bert model generalizes better to recognize different room
types in new houses (see Figure 5a-5d), and performs bet-

ter on significantly different environments such as a church
(Figure 5e) or castle (Figure 5f).

New objects. Airbert also improves the understanding
of new objects in home environments, e.g. through noun
phrases related to household objects. As shown in Figure 6,
it is successful at following instructions containing noun
phrases that rarely occur or are even unseen on the training
set, while the VLN-BERT model that is trained on a large
image-caption corpus not pertaining to houses fails.

Similar environments and instructions. Figure 7 displays
examples where the environments and the instructions are
similar to those on the training set, with the aim to show
that the shuffling loss in pretraining also benefits learning.



(a) R2R 4: Walk over the kitchen counter, turn left, walk ahead till wall,
turn right, walk to the closet room, wait at front.

(b) REVERIE 4: Walk past the kitchen and enter the hallway. Turn right
at the artwork and wait by the closet.

(c) R2R 4: Walk forward to the sitting area to the right of the stairs.
Walk to the wall of windows and take a right into the recreation room and
stop before you reach the pool table.

(d) R2R 4: Go between the counters, turn left, turn right, and stop before
the display and dining room.

(e) R2R 4: Turn right and head towards the end. Once you reach the end
make a right and stop.

(f) R2R 4: Walk straight out the door in front of you and follow the red
carpet. Keep going through the room with the ropes and stop when you
enter the next room with ropes.

Figure 5: When navigating in new houses, our Airbert model not only successfully recognizes the closet room in (a) and (b), pool table (c),
living room (d), but also generalizes better to challenging environments, such as the church (e) and castle (f).

For example, in Figure 7a, the VLN-BERT agent n focuses
on the stairs (in the last step) and goes upstairs incorrectly,
whereas Airbert learns to consider intermediate steps such
as “lounge chairs” and “cabinet” besides the last step by
learning from the shuffling task. Similarly, in Figure 7c,
we see that the VLN-BERT agent stops at the wrong stairs,
while Airbert considers intermediate steps such as “hall-
way” and “wooden doors”, and ends within the acceptable
range of 3m from the goal.

Failure cases. Figure 8 presents some failure cases for both
VLN-BERT and Airbert. It reveals that current models still
struggle to deal with relationships such as “between” (Fig-
ure 8a), or directional instructions such as “on the left” (Fig-
ure 8b). Similar failures are also highlighted by Table 5 of
the main paper where we show that models fail to choose
the correct instruction when a direction keyword (left/right)
is switched.



(a) R2R 4: Walk up the stairs and take a right. Walk into the bedroom
and take a left . Take another left at the night stand and walk out of the
bedroom. Wait by the toilet in the second door on the right.

(b) R2R 4: Go straight past the table and chairs then turn left and con-
tinue to go past the table and chairs. Wait near the white antique furniture
with the two chairs on on each side.

(c) REVERIE 4: Walk past the pool table and towards the TV on the far
side of the room and grab the coffee table that is located in front of the
couch

(d) REVERIE 4: Please go to the pantry room with the two large freez-
ers and kitchen appliances on the large table and reset the flipped breaker
in the breaker panel box to the right of the freezers

Figure 6: The Airbert model outperforms VLN-BERT to recognize rare or even unseen objects in training set. (a) Rare object “night
stand”; (b) unseen object “antique furniture”; (c) rare object “pool table”; and (d) unseen object “freezer”.

C.3. Few-shot Learning on VLN

As mentioned in the main paper, we present complete re-
sults for the few-shot learning evaluation, along with stan-
dard deviations in Table 2. While the performance on the
seen validation houses fluctuates a lot (also due to chang-
ing the environment in the seen validation set), unseen val-
idation is very stable. Recall that VLN-BERT achieves an
unseen validation performance of 27% and 37% with 1 and
6 training environments respectively. On the other hand,
Airbert achieves a superior 49.5% and 58% – an absolute
improvement of ∼22% in both cases.
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(a) R2R 4: Walk from dining room to living room turning slightly right
before lounge chairs, walk straight following cabinet. Turn slight right
and stop at stairs.

(b) R2R 4: Walk on into the kitchen and turn to the right. Walk past the
staircase, behind the chairs. Walk to the right of the pillar. Stop and wait
by the footstool.

(c) R2R 4: Walk out of the hallway and turn left. Walk down the steps
and through the wooden doors. Walk down the steps and stop.

(d) R2R 4: Go straight passed the coffee table turn left and go through
the left door to the stairs. Stop in front of the stairs.

Figure 7: Examples in similar environments and instructions to the training set. The improvements of Airbert model can be contributed to
the shuffling loss in pretraining.
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(a) R2R 8: Walk between the two kitchen islands and then turn right.
Pass through the stone archway and stop just after you pass through it.
Wait there.

(b) R2R 8: Exit the bathroom and go down the stairs. Enter the last
doorway on the left and stop just before stepping on the rug.

(c) REVERIE 8: go to level 3 bathroom in the first bedroom left of the
stairs and grab the mirror on the wall

(d) REVERIE 8: Go to the lounge on this level and polish the black
leather armchair in the corner

Figure 8: Failure cases for both VLN-BERT and Airbert models.


