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A. Additional Implementation Details

Training Time. As the DMAS hallucinator is a multi-
layer perceptron (MLP), the training is very fast. We use
Nvidia Quadro RTX 8000 with 48GB memory to train our
models. The training time for each iteration on a single
GPU is 0.7 seconds. When training our model for 12, 000
iterations, the total training time on the minilmageNet dataset
is around 2.5 hours.

Training of Mentor Classifiers. The mentor classifier
is a large-sample classifier and is thus trained in a standard
batch mode. We use a mini-batch with 256 image features
which is randomly sampled from Sjarge.

B. Inductive/Transductive Methods

For a fair comparison, we only use the training set as
the meta-training set (i.e., the inductive learning scenario).
Note that to further boost the few-shot learning accuracy,
recent methods consider leveraging the transducive learning
scenario, where they have access to the test data. For exam-
ple, transducive fine-tuning [4] fine-tunes the network on the
meta-testing set and uses information from the testing data.
It performs gradient updates during the fine-tuning phase,
which makes it slow (e.g., 50x slower for a single query
shot) at inference time [4]. SIB +E*BM [10] meta-learns an
ensemble of epoch-wise empirical Bayes models (E*BM) to
achieve robust predictions. The comparison with these meth-
ods is shown in Table A. Under the inductive learning setting
without having access to the meta-testing set, we outperform
the state-of-the-art methods by a large margin. Notably, our
inductive approach with a shallow network achieves compa-
rable performance with and in some cases even outperforms
state-of-the-art transductive learning methods.

Note that, there are other transductive learning approaches
by having access to the meta-testing set [6, 7, 11, 5, 9],
learning with external data [1, 12], and model ensemble [8].
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In our work, we only consider inductive learning without
accessing any meta-testing set or external data. On the other
hand, our data hallucination approach is agnostic to the
choice of learning settings, and can be further improved by
leveraging transductive learning. We leave this as future
work.

C. Additional Comparisons and Ablation Stud-
ies

Additional Comparisons with State of the Art. In the
main paper, we provided extensive comparisons with state-
of-the-art methods. Here in Table A, we present additional
comparisons on minilmageNet and tieredlmageNet. Our
model consistently outperforms these methods as well by
large margins. In addition, we further combine DMAS with
DeepEMDv2-Samping in [14] — a more advanced variant
of the best-performing baseline DeepEMD [15]. Table B
shows that our DMAS can work with DeepEMDv2-Samping
and improves its performance, which is consistent with the
observations in Table 4 in the main paper.

Additional Comparisons with Data Augmentation.
We also compare our DMAS with other data augmenta-
tion strategies such as RandAugment [3]. With the same
ResNet12 backbone, Table C shows that DMAS consistently
outperforms RandAugment by large margins.

Analysis of Hyper-Parameter Sensitivity. We conduct
sensitivity experiments on the minilmageNet dataset for the
hyper-parameters « and 3, which trade off different loss com-
ponents in the overall objective of our DMAS hallucinator.
We vary one of the hyper-parameters while fixing the remain-
ing one to its cross-validated value. As shown in Figure A,
the performance is stable over different hyper-parameter
values. Across the board with different hyper-parameter val-
ues, our DMAS consistently and significantly outperforms
the baselines shown in the main paper. In addition, we use
the same set of hyper-parameter values for all the datasets,
further showing the generalizability of our approach.
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Figure A: Sensitivity analysis of the trade-off hyper-parameters « and g in the overall objective on minilmageNet. The performance of our
DMAS is stable over different hyper-parameter values. In addition, we use the same set of hyper-parameter values for all the datasets,

further showing the generalizability of our approach.

Learning setting Method Backbone k:;nzmlmageNet 3 k:tieredlmageNetS
Transductive learning Trans—FT [4] WRN-28-10 | 65.73 +0.68 78.40+0.52 73.34+0.71 85.50 +0.50
SIB+E*BM [10] ResNet25 714 + - 812 £ - 756 = - 843 £+ -
Trans-FT [4] WRN-28-10 | 57.73 +£0.62 78.17 £0.49 66.58 +0.70 85.55 + 0.48
Inductive learning MTL+E3BM [10] | ResNet25 | 643 £ - 810 £ - 700 £ - 850 + -
Meta-baseline [2] ResNetl2 | 63.17 £0.23 79.26 +£0.17 68.62 +0.27 83.29 +0.18
Inductive learning DMAS (Ours) ResNetl12 6742 +£0.28 83.74 +£0.20 73.54+0.73 86.27 £+ 0.47

Table A: Comparison of inductive/transductive learning methods. Our model outperforms other baseline methods under the same inductive
learning setting, while achieving comparable performance with and in some cases even outperforming the transductive learning methods. In
addition, our data hallucination approach is agnostic to the choice of learning settings, and can be further improved by leveraging transductive
learning.

minilmageNet CUB
Method =1 3 T=1 3
DeepEMDv2-Sampling [14] 68.77£029 84.13£0.53 79.27+£0.29 89.80+ 0.51
DeepEMDv2-Sampling + DMAS (Ours) | 69.45 +0.15 84.50 £ 0.20 80.05 + 0.62 90.75 + 0.35

Table B: Additional ablation study on the generalizability of our approach and comparison with DeepEMDv2-Sampling — a more advanced
variant of the best-performing baseline DeepEMD [15]. Our DMAS hallucinator can combine with DeepEMDv2-Sampling and improve its
performance as well.

minilmageNet tieredImageNet
Method =i 3 =i 3

RandAugment [3] | 62.72 £0.57 79.60 £ 0.25 70.34 +0.71 84.92 £0.59
DMAS (Ours) 67.42 +0.28 83.74 £0.20 73.54 £0.73 86.27 + 0.47
Table C: Ours outperforms RandAugment by large margins.
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Figure B: t-SNE visualizations of hallucinated examples for five
novel classes on minilmageNet. Seeds as stars, real examples as
crosses, hallucinated examples as triangles.
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