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1. Network Architectures
In Tab. 1 we describe in details the shared depth and se-

mantic segmentation network used in our experiments. This
architecture is based on recent developments in monocu-
lar depth estimation [8]. Note that our proposed algorithm
can be generalized to any multi-scale backbones. We leave
the exploration of architectures more suitable to jointly
predict semantic segmentation [2, 3, 14] and monocular
depth [8, 7] for future work. For the shared backbone we
use a ResNet101 [9] encoder, that produces feature maps
with varying number of channels at increasingly lower res-
olutions (#1, #2, #3, #4, #5 in Tab. 1). These feature maps
are used as skip connections for both the depth and the se-
mantic segmentation decoders, through a series of convolu-
tional layers followed by bilinear upsampling. For the depth
decoder, at the final four upsampling stages (#10, #13, #16,
#19 in Tab. 1) an inverse depth layer is used to produce es-
timates within a minimum and maximum depth range:
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All four scales are used to calculate the self-supervised pho-
tometric loss (with results averaged per-batch, per-scale and
per-pixel), and only the final scale is used to calculate the
supervised depth loss. During inference, only the final scale
is used as depth prediction estimates. The semantic network
is similar, with the difference that the outputs at each of the
upsampling stages (#9, #11, #13, #15 in Tab. 1) are instead
concatenated (after bilinear upsampling to the highest res-
olution) and processed using a final convolutional layer to
produce a C-dimensional logits vector for each pixel.

Our pose network is described in Tab. 2, and follows
closely [8]. It uses a ResNet18 backbone as encoder, fol-
lowed by four convolutional layers with 256 channels. Fi-
nally, a global pooling layer outputs a 6-dimensional vec-
tor, containing (x, y, z) translation and (roll, pitch, yaw) ro-
tation. We have experimented with a shared encoder for
depth, semantic segmentation and pose, however as pointed
out in [8] performance degraded in this configuration.

Layer Description Out. Dimension
RGB image 3×H×W

ResNet101 Encoder

#1 Intermediate Features #1 256×H/2×W/2
#2 Intermediate Features #2 256×H/4×W/4
#3 Intermediate Features #3 512×H/8×W/8
#4 Intermediate Features #4 1024×H/16×W/16
#5 Latent Features 2048×H/32×W/32

Depth Decoder

#6 Conv2d (#5)→ ELU→ Upsample 256×H/16×W/16
#7 Conv2d (#6 ⊕ #4)→ ELU 256×H/16×W/16
#8 Conv2d (#7)→ ELU→ Upsample 128×H/8×W/8
#9 Conv2d (#8 ⊕ #3)→ ELU 128×H/8×W/8
#10 Conv2d (#9)→ InvDepth 1×H/8×W/8
#11 Conv2d (#9)→ ELU→ Upsample 64×H/4×W/4
#12 Conv2d (#11 ⊕ #2)→ ELU 64×H/4×W/4
#13 Conv2d (#12)→ InvDepth 1×H/4×W/4
#14 Conv2d (#12)→ ELU→ Upsample 32×H/2×W/2
#15 Conv2d (#14 ⊕ #1)→ ELU 32×H/2×W/2
#16 Conv2d (#15)→ InvDepth 1×H/2×W/2
#17 Conv2d (#15)→ ELU→ Upsample 16×H×W
#18 Conv2d (#17)→ ELU 16×H×W
#19 Conv2d (#18)→ InvDepth 1×H×W

Semantic Decoder

#6 Conv2d (#5)→ ELU→ Upsample 256×H/16×W/16
#7 Conv2d (#6 ⊕ #4)→ ELU 256×H/16×W/16
#8 Conv2d (#7)→ ELU→ Upsample 128×H/8×W/8
#9 Conv2d (#8 ⊕ #3)→ ELU 128×H/8×W/8
#10 Conv2d (#9)→ ELU→ Upsample 64×H/4×W/4
#11 Conv2d (#10 ⊕ #2)→ ELU 64×H/4×W/4
#12 Conv2d (#11)→ ELU→ Upsample 32×H/2×W/2
#13 Conv2d (#12 ⊕ #1)→ ELU 32×H/2×W/2
#14 Conv2d (#13)→ ELU→ Upsample 16×H×W
#15 Conv2d (#14)→ ELU 16×H×W
#16 Conv2d (#9 ⊕ #11 ⊕ #13 ⊕ #15) C×H×W

Table 1: Depth and semantic segmentation multi-task
network. We use a ResNet101 backbone as encoder, that
outputs intermediate features at different resolutions. These
intermediate features are used as skip connections in dif-
ferent stages of the semantic and depth decoders. ELU are
Exponential Linear Units [5], Upsample denotes bilinear in-
terpolation, InvDepth is an inverse depth layer (Eq. 1), and
⊕ denotes feature concatenation.
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Figure 1: The Parallel Domain dataset: sample images.

Layer Description Out. Dimension
2 Stacked RGB images 6×H×W

ResNet18 Encoder

#1 Latent Features 256×H/8×W/8

Pose Decoder

#2 Conv2d→ ReLU 256×H/8×W/8
#3 Conv2d→ ReLU 256×H/8×W/8
#4 Conv2d→ ReLU 256×H/8×W/8
#5 Conv2d→ Global Pooling 6

Table 2: Pose network. Two concatenated RGB images
are used as input for a ResNet18 encoder (the first convolu-
tional layer is duplicated to account for that). The output is
a 6-dimensional vector estimating the rigid transformation
between frames (translation and rotation in Euler angles).

2. Parallel Domain

This dataset is procedurally generated using the Paral-
lel Domain synthetic data generation service [1]. It con-
tains 5000 10-frame sequences, for a total of 50000 frames.

Each frame consists of an RGB image from a front-facing
vehicle-mounted camera along with associated per-pixel
depth and semantic segmentation labels. The dataset con-
sists of urban and highway environments with varying num-
ber of agents, time of day, and weather conditions. We
present reference images from the dataset in Fig. 1. Each
image is rendered with a 1936× 1216 resolution. The high
degree of fidelity and perceptual quality allows us to inves-
tigate the following questions: (i) how does the quality of
the simulation affect the sim-to-real domain gap; and (ii)
can we decrease the sim-to-real domain gap with additional
synthetic data. As reported in the main paper, Tab. 1 and
Fig. 7, we conclude that high quality synthetic data can in-
deed help narrow the sim-to-real gap, and the gap is further
narrowed as additional data is made available.

3. Qualitative Results

In Fig. 2 we present semantic pointclouds estimated us-
ing GUDA+PL for unsupervised domain adaptation from
Parallel Domain to Cityscapes. Because our multi-task net-
work (Tab. 1) produces both depth and semantic segmenta-
tion estimates, we can lift the predicted semantic labels to



Figure 2: Qualitative depth and semantic segmentation results, using GUDA+PL to perform unsupervised domain adapta-
tion from Parallel Domain to Cityscapes. The same multi-task network was used to generate depth and semantic segmentation
estimates, that were combined into a 3D pointcloud using camera intrinsics. No real-world labels (depth or semantic) were
used during training.
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Source (SY) 70.2 35.0 74.7 2.1 0.2 27.8 1.7 4.4 76.9 83.4 44.4 9.9 51.3 7.9 4.0 12.8 31.7 36.7
Source (PD) 85.5 39.4 70.6 0.0 0.8 37.6 25.4 11.9 79.9 80.9 47.0 25.0 70.1 10.7 9.8 15.3 38.1 44.0
Target 97.1 82.9 90.6 47.3 51.7 57.1 60.8 72.5 91.6 93.3 75.8 54.3 93.4 77.5 48.5 71.9 72.9 77.8
(a) Comparison with other depth-based UDA methods (SYNTHIA→ Cityscapes)
SPIGAN [11] 71.1 29.8 71.4 3.7 0.3 33.2 6.4 15.6 81.2 78.9 52.7 13.1 75.9 25.5 10.0 20.5 36.8 42.4
GIO-Ada [4] 78.3 29.2 76.9 11.4 0.3 26.5 10.8 17.2 81.7 81.9 45.8 15.4 68.0 15.9 7.5 30.4 37.3 43.0
DADA [17] 89.2 44.8 81.4 6.8 0.3 26.2 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 42.6 49.8

GUDA 85.4 49.5 80.8 13.8 0.9 36.2 21.8 35.2 78.8 84.7 59.9 13.5 84.0 33.8 2.8 30.9 44.5 50.9
(b) Comparison with other UDA methods (SYNTHIA→ Cityscapes)
Xu et al. [18] — — — — — — — — — — — — — — — — 38.8 —
CLAN [13] 81.3 37.0 80.1 — — — 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 — 47.8
CBST [23] 53.6 23.7 75.0 12.5 0.3 36.4 23.5 26.3 84.8 74.7 67.2 17.5 84.5 28.4 15.2 55.8 42.5 48.4
CRST [22] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1
ESL[15] 84.3 39.7 79.0 9.4 0.7 27.7 16.0 14.3 78.3 83.8 59.1 26.6 72.7 35.8 23.6 45.8 43.5 50.7
FDA [20] 79.3 35.0 73.2 — — — 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 — 52.5
CCMD [12] 79.6 36.4 80.6 13.3 0.3 25.5 22.4 14.9 81.8 77.4 56.8 25.9 80.7 45.3 29.9 52.0 45.2 52.6
Yang et al. [19] 85.1 44.5 81.0 — — — 16.4 15.2 80.1 84.8 59.4 31.9 73.2 41.0 32.6 44.7 53.1
USAMR [21] 83.1 38.2 81.7 9.3 1.0 35.1 30.3 19.9 82.0 80.1 62.8 21.1 84.4 37.8 24.5 53.3 46.5 53.8
IAST [10] 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 49.8 57.0

GUDA+PL 88.1 53.0 84.0 22.0 1.4 39.6 28.2 24.8 82.7 81.5 65.5 22.7 89.3 50.5 25.1 57.5 51.0 57.9
(c) Comparison with the state of the art (Varying Sources→ Cityscapes)
UDAS [16] 86.6 37.8 80.8 29.7 16.4 28.9 30.9 22.2 37.1 76.9 60.1 7.8 84.1 32.1 23.2 13.3 44.3 49.2
USAMR (G5) [21] 90.5 35.0 84.6 34.3 24.0 36.8 44.1 42.7 84.5 82.5 63.1 34.4 85.8 38.2 27.1 41.8 53.1 58.0
IAST (G5) [10] 94.1 58.8 85.4 39.7 29.2 25.1 43.1 34.2 84.8 88.7 62.7 30.3 87.6 50.3 35.2 40.2 55.6 61.2

GUDA(PD)+PL(G5) 92.9 50.5 86.0 17.9 24.0 45.4 50.9 44.5 87.7 87.0 66.6 36.9 89.5 52.1 28.5 54.0 57.2 63.2

Table 3: Semantic segmentation results on Cityscapes using different unsupervised domain adaptation (UDA) methods and
synthetic datasets. The mIoU metric considers all 16 classes, and mIoU* considers only the 13 classes present in SYNTHIA
(removing the ones marked with *). Source shows results without any adaptation, and Target shows results with semantic
supervision on the target domain. Synthetic datasets include: SYNTHIA (SY), Parallel Domain (PD), and GTA5 (G5).
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Source 64.9 28.3 37.8 18.8 11.7 63.7 21.6 78.7 55.3 1.5 38.6
DANN 70.3 49.4 39.5 28.0 22.2 67.0 23.1 82.0 69.4 5.1 45.6
GUDA 86.8 72.7 46.2 41.4 44.6 77.3 29.1 88.5 86.1 9.8 58.25

Table 4: Semantic segmentation results on VKITTI2→ KITTI, using GUDA and DANN [6].
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Source 93.9 30.7 49.3 35.7 50.7 20.8 87.2 89.3 10.0 28.7 63.2 38.4 14.3 8.5 7.3 41.9
DANN 95.3 36.1 53.0 35.6 52.8 20.7 88.3 90.3 15.2 38.7 67.5 44.1 36.5 19.5 11.1 47.0
GUDA 96.1 48.0 58.9 37.1 55.8 22.0 89.6 93.0 30.6 54.8 70.8 47.2 58.7 41.6 29.6 55.6

Table 5: Semantic segmentation results on Parallel Domain→ DDAD, using GUDA and DANN [6].



3D space using depth estimates and camera intrinsics. Each
pixel is assigned a 3D coordinate in the camera frame of
reference, as well as RGB colors and semantic logits. We
emphasize that no real-world labels (depth maps or seman-
tic classes) were used at any point during the training of
this network, only image sequences. All labeled informa-
tion was obtained from synthetic datasets, and adapted to
better align with real-world data using our proposed GUDA
approach to geometric unsupervised domain adaptation.

4. Detailed Tables
We also present detailed tables to complement some re-

sults from the main paper. In particular, Table 3 expands
Table 1 from the main paper, showing per-class results on
the Cityscapes dataset of the various methods we use as
comparison to validate the improvements of our proposed
GUDA approach. Similarly, Tables 4 and 5 expand Figures
5 and 6 from the main paper, showing respectively GUDA
results from our VKITTI2 to KITTI and PD to DDAD exper-
iments relative to source-only and DANN [6].
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