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Abstract

Supplementary material to the main paper.

1. Detailed Network Architecture
The detailed architecture of the generator is shown in Ta-

ble 1. In feat means the input feature map, K size indicates

the convolution kernel size, Out chs tells the channel num-

ber of the output feature map, and S Uf represents the stride

of convolution or scale factor of upsampling. In the decoder,

nearest neighbor upsampling is applied before each par-

tial convolution and skip connections are utilized to com-

bine low-level features with the high-level ones at multiple

scales. BN indicates Batch Normalization, Act Func rep-

resents the type of nonlinearity layer, ReLU denotes ReLU

non-linear activation, LReLU indicates Leaky ReLU with

the slope of 0.2, and FModule represents the output of the

corresponding module.

2. Visualization of Feature Maps
We visualize the feature maps learned by the Bi-GFF and

CFA modules to give more insights into them.

Bi-directional Gated Feature Fusion (Bi-GFF). Bi-GFF

is used to integrate the structure and texture information,

enhancing their consistency. In particular, Gt and Gs are

learned to control the integration degree. Dot product be-

tween them and two different kinds of feature maps are cal-

culated, thus Gt and Gs have texture- and structure-specific

responses, respectively, as shown in Figure 1 (c, d).

Contextual Feature Aggregation (CFA). The CFA mod-

ule is developed to refine the generated contents by region

affinity learning and multi-scale feature aggregation. In

Figure 1 (e), we visualize the attention maps learned by

CFA, which reveal that the module is aware of contextual

semantics and it is able to model long-term spatial depen-
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dency. We further visualize the multi-scale weight maps,

i.e., W 1, W 2, W 4 and W 8, which can be adaptively ad-

justed to make the method suitable for different inpainting

cases. Specifically, for most face images, the weight maps

with dilation rate = 1 have a stronger intensity, making the

model aggregate more details; while for facades, the weight

maps with dilation rate = 2, 4 play a dominant role, making

the model focus more on the intermediate features.

3. Additional Quantitative Comparion
In Table 2 and Table 3, we report the quantitative com-

parion of the proposed method and the current state-of-the-

art on the CelebA and Paris StreetView datasets, respec-

tively. Our method performs favorably against the others.

4. Additional Qualitative Comparion
More comparison examples on the CelebA, Paris

StreetView and Places2 datasets are shown in Figure 2. It

can be seen that our method generates more semantically

plausible and photo-realistic results than its counterparts.

We also show more comparison with EdgeConnect [6]

and PRVS [2] in Figure 3, mainly because these methods

claim to improve results by reconstructing image structures

as ours. The proposed model recovers more meaningful

structures, leading to better results.

5. Additional Visual Results
Figure 4, 5, and 6 show more visual results of our

approach achieved on the CelebA, Paris StreetView and

Places2 datasets, respectively.

6. Object Removal Results
Figure 7 shows the results of our approach on the object

removal task, which demonstrates its effectiveness, practi-

cality and generalization ability.
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Figure 1: Visualization of the feature maps learned by the network.

Image Encoder, Edge Decoder Edge Encoder, Image Decoder

Module In Feat K Size Out chs S Uf BN Act Func Module In Feat K Size Out chs S Uf BN Act Func

I ec 1 Iin 7 64 2 N ReLU E ec 1 Ein, Iin 7 64 2 N ReLU

I ec 2 F I ec 1 5 128 2 Y ReLU E ec 2 FE ec 1 5 128 2 Y ReLU

I ec 3 F I ec 2 5 256 2 Y ReLU E ec 3 FE ec 2 5 256 2 Y ReLU

I ec 4 F I ec 3 3 512 2 Y ReLU E ec 4 FE ec 3 3 512 2 Y ReLU

I ec 5 F I ec 4 3 512 2 Y ReLU E ec 5 FE ec 4 3 512 2 Y ReLU

I ec 6 F I ec 5 3 512 2 Y ReLU E ec 6 FE ec 5 3 512 2 Y ReLU

I ec 7 F I ec 6 3 512 2 Y ReLU E ec 7 FE ec 6 3 512 2 Y ReLU

E dc 1 F I ec 7 512 2 I dc 1 FE ec 7 512 2

, FE ec 6 3 512 1 Y LReLU , F I ec 6 3 512 1 Y LReLU

E dc 2 FE dc 1 512 2 I dc 2 F I dc 1 512 2

, FE ec 5 3 512 1 Y LReLU , F I ec 5 3 512 1 Y LReLU

E dc 3 FE dc 2 512 2 I dc 3 F I dc 2 512 2

, FE ec 4 3 512 1 Y LReLU , F I ec 4 3 512 1 Y LReLU

E dc 4 FE dc 3 512 2 I dc 4 F I dc 3 512 2

, FE ec 3 3 256 1 Y LReLU , F I ec 3 3 256 1 Y LReLU

E dc 5 FE dc 4 256 2 I dc 5 F I dc 4 256 2

, FE ec 2 3 128 1 Y LReLU , F I ec 2 3 128 1 Y LReLU

E dc 6 FE dc 5 128 2 I dc 6 F I dc 5 128 2

, FE ec 1 3 64 1 Y LReLU , F I ec 1 3 64 1 Y LReLU

E dc 7 FE dc 6 64 2 I dc 7 F I dc 7 64 2

, Ein, Iin 3 64 1 Y LReLU , Iin 3 64 1 Y LReLU

Bi-GFF module

CFA module

Output: Conv.(1, 1, 3); Tanh

Table 1: The detailed architecture of the generator.



Metrics LPIPS† PSNR¶ SSIM¶

Mask Ratio 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

PatchMatch [1] 0.059 0.202 0.371 29.81 23.49 18.77 0.878 0.704 0.516

PConv [4] 0.046 0.122 0.221 31.89 26.48 21.32 0.899 0.750 0.558

DeepFillv2 [7] 0.040 0.107 0.214 32.48 26.93 21.70 0.906 0.757 0.569

RFR [3] 0.031 0.090 0.185 33.50 27.63 22.69 0.916 0.780 0.603

EdgeConnect [6] 0.042 0.117 0.215 32.12 26.79 21.66 0.904 0.758 0.566

PRVS [2] 0.039 0.112 0.209 32.34 26.89 21.78 0.908 0.762 0.573

MED [5] 0.037 0.106 0.203 32.68 27.01 21.86 0.907 0.763 0.575

Ours 0.028 0.081 0.179 33.91 27.73 22.70 0.920 0.788 0.609

Table 2: Objective quantitative comparison on CelebA (†Lower is better; ¶Higher is better).

Metrics LPIPS† PSNR¶ SSIM¶

Mask Ratio 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

PatchMatch [1] 0.078 0.195 0.362 30.70 25.31 20.59 0.881 0.689 0.499

PConv [4] 0.058 0.133 0.273 32.05 26.66 22.17 0.898 0.741 0.538

DeepFillv2 [7] 0.050 0.128 0.269 32.31 26.92 22.48 0.905 0.752 0.551

RFR [3] 0.041 0.112 0.234 32.69 27.33 22.76 0.919 0.772 0.568

EdgeConnect [6] 0.053 0.129 0.262 31.98 26.70 22.39 0.903 0.757 0.554

PRVS [2] 0.051 0.125 0.254 32.23 26.89 22.50 0.910 0.762 0.563

MED [5] 0.050 0.122 0.248 32.36 26.97 22.44 0.915 0.760 0.559

Ours 0.039 0.107 0.226 32.93 27.48 22.89 0.923 0.777 0.573

Table 3: Objective quantitative comparison on Paris StreetView (†Lower is better; ¶Higher is better).
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Figure 2: Qualitative comparison on CelebA, Paris StreetView and Places2 (zoom in for a better view): (a) input corrupted

images, (b) PatchMatch [1], (c) PConv [4], (d) DeepFillv2 [7], (e) RFR [3], (f) MED [5], (g) Ours, and (h) ground-truth

images.
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Figure 3: Visual comparison of different structure-based methods on CelebA, Paris StreetView and Places2 (zoom in for a

better view): (a) input corrupted images; (b, c, d) reconstructed structures of EdgeConnect [6], PRVS [2] and Ours; (e, f, g)

corresponding filled results of EdgeConnect [6], PRVS [2] and Ours; and (h) ground-truth images.



(a) Input (b) Ours (c) Ground-truth (d) Input (e) Ours (f) Ground-truth

Figure 4: Visual results on CelebA (zoom in for a better view): (a, d) input corrupted images, (b, e) our results, and (c, f)

ground-truth images.



(a) Input (b) Ours (c) Ground-truth (d) Input (e) Ours (f) Ground-truth

Figure 5: Visual results on Paris StreetView (zoom in for a better view): (a, d) input corrupted images, (b, e) our results, and

(c, f) ground-truth images.



(a) Input (b) Ours (c) Ground-truth (d) Input (e) Ours (f) Ground-truth

Figure 6: Visual results on Places2 (zoom in for a better view): (a, d) input corrupted images, (b, e) our results, and (c, f)

ground-truth images.



(a) Original Image (b) Input (c) Ours (d) Original Image (e) Input (f) Ours

Figure 7: Object removal results (zoom in for a better view): (a, d) original images, (b, e) input images, and (c, f) our results.


