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1. More Implementation Details
1.1. The Structure of the Stereo Detector

The main structure of our stereo 3D detector follows that
of DSGN [2] but with much less memory consumption and
lower computation cost. The network structure is described
in Table 1 in details.
2D Feature Extraction. For the 2D backbone network,
we employ a modified version of ResNet-34 [3] with spa-
tial pyramid pooling (SPP) module and feature upsampling.
Compared with [2], the numbers of blocks in conv2-5 are
reduced from {3, 6, 12, 4} to {3, 4, 6, 3}. The channels of
conv2-5 are set to {64, 128, 128, 128}. The SPP module
is the same as previous implementations [1, 2]. In addition,
we append a small U-Net [5] on the top of the 2D back-
bone to upsample the SPP feature back into full resolution
to provide high-resolution features for stereo matching.
Stereo Aggregation Network. Although the 2D stereo fea-
tures Fl,Fr are at full image resolution, we still construct
the plane sweep volume (the stereo cost volume) at 1/4 res-
olution to save memory. The number of base channels of
the stereo aggregation network is set to 32, which is half of
the number of channels in [2].
Space Conversion. The volumetric feature in stereo space
Vst is converted into 3D space using Eq. (2) in the paper,
which is then filtered by a 3D convolution layer and average
pooling layer (along Y dimension) to output the volume in
3D space V3d. The BEV feature is constructed by merging
the y dimension and the channel dimension of V3d and then
compressed into 64 channels.
BEV Aggregation Network. The structure for the BEV
aggregation network follows [2], which is a shallow
hourglass-like network.
3D Detection Head. For the 3D detection head, we fol-
low the open source implementation of SECOND [7] in
OpenPCDet [6]. For each class and each (x, z) location
in the BEV space, we create two anchors with fixed aver-
age size and rotations of 0 and 90 degrees. The default an-
chor sizes are la=3.9, wa=1.6, ha=1.56 for cars, la=0.8,
wa=0.6, ha=1.73 for pedestrians, and la=1.76, wa=0.6,

ha=1.73 for cyclists, and their y coordinates are set to
ya={1.78m, 0.6m, 0.6m}, respectively. The training tar-
gets are assigned with IoU-based criteria. The matched and
unmatched IoU thresholds for the three classes are set to
0.6, 0.5, 0.5 and 0.45, 0.35, 0.35. Anchors with IoU be-
tween matched and unmatched thresholds are ignored for
training. For each anchor, we output 3-dimensional classi-
fication and 7-dimensional regression predictions. The 3D
bounding box regression targets are given by the following
box encoding functions,

xt =
xg − xa
da

, yt =
yg − ya
ha

, zt =
zg − za
da

,

wt = log
wg
wa

, lt = log
lg
la
, ht = log

hg
ha
,

θt = θg − θa,

(1)

where the subscripts t, a, g denote the encoded regression
targets, the anchors, and the ground truth. θ is the yaw di-
rection around the y-axis.

The classification loss Lcls, the direction classification
loss Ldir, and the L1 regression loss LL1reg are the same as
SECOND [7], and the auxiliary IoU-based regression loss
is defined by,

LIoUreg = 1− IoU3d (decode(δp, ξa), ξg) (2)

where δp is the regression predictions, ξa is the anchor
{xa, ya, za, wa, la, ha, θa}, and ξg is the assigned ground-
truth bounding box {xg, yg, zg, wg, lg, hg, θg}. Similar to
the L1 regression loss, the IoU regression loss is only
applied to positive samples. Non-maximum suppression
(NMS) is applied to the 3D box predictions for each class
separately, with the IoU threshold set to 0.25.
2D Detection Head. From the 2D feature extraction part,
we have obtained 5-level FPN features spp1-5 from Fsem
with a sequence of stride-2 convolution layers. The strides
of these features are {4, 8, 16, 32, 64}. For each level of the
features, we apply a 2D detection head with two branches,
classification branch and regression branch, to predict 2D
bounding boxes. Following ATSS [8], each position is only



Output Input Module Config #Channel Size
2D Feature Extraction

conv1 Il/r Conv (7×7), s=2 64 H/2×W/2
conv2 BasicBlock×3 64 H/2×W/2
conv3 BasicBlock×4, s=2 128 H/4×W/4
conv4 BasicBlock×6, d=2 128 H/4×W/4
conv5 BasicBlock×3, d=4 128 H/4×W/4
spp1 AvgPool (64×64); Conv (1×1); Upsample 64× 32 H/4×W/4
spp2 AvgPool (32×32); Conv (1×1); Upsample 32× 32 H/4×W/4
spp3 AvgPool (16×16); Conv (1×1); Upsample 16× 32 H/4×W/4
spp4 AvgPool (8×8); Conv (1×1); Upsample 8× 32 H/4×W/4
spp spp1-4, conv3-5 Concat 512 H/4×W/4

hres1 conv2 Conv (1×1) 64 H/2×W/2
hres2 Il/r Conv (1×1) 32 H×W
up1 spp Conv (3×3); Upsample 2×; Add hres1; ReLU 64 H/2×W/2
up2 Conv (3×3); Upsample 2×; Add hres2; ReLU 32 H×W
Fl/r Conv (3×3)×2 32, 32 H×W
Fsem spp of Il Conv (3×3)×2 128, 32 H/4×W/4
fpn pre Conv (1×1) 64 H/4×W/4

fpn0 Conv (3×3) 64 H/4×W/4
fpn1 Conv (3×3), s=2 64 H/8×W/8
fpn2 Conv (3×3), s=2 64 H/16×W/16
fpn3 Conv (3×3), s=2 64 H/32×W/32
fpn4 Conv (3×3), s=2 64 H/64×W/64

Stereo Aggregation Network
Vst Fl, Fr Construct Plane Sweep Volume (Eq.(1)) 64 D/4×H/4×W/4

st conv1 Conv (3×3×3) 32 D/4×H/4×W/4
st conv2 Conv (3×3×3); Add st conv1 32 D/4×H/4×W/4
st hg1 Conv (3×3×3)×2, s=2 64 D/8×H/8×W/8
st hg2 Conv (3×3×3)×2, s=2 64 D/16×H/16×W/16
st hg3 Deconv (3×3×3); Add st hg1; ReLU 64 D/8×H/8×W/8

Ṽst Deconv (3×3×3); Add st conv2 32 D/4×H/4×W/4
st prob (3×3×3)×2 32, 1 D/4×H/4×W/4
Pst Upsample 4×; Softmax 1 D×H×W

Stereo Space →3D Space →BEV Space
Vraw

3d Fsem, Vst Construct 3D Volume (Eq.(2)) 64 Nx×Ny×Nz

V3d Conv (3×3×3); AvgPool (1×4×1) 32 Nx×Ny/4×Nz

FBEV Reshape; Conv (3×3) 32×Ny/4, 64 Nx×Nz

BEV Aggregation Network
bev hg1 Conv (3×3)×2, s=2 128 Nx/2×Nz/2
bev hg2 Conv (3×3)×2, s=2 128 Nx/4×Nz/4
bev hg3 Deconv (3×3); Add bev hg1; ReLU 128 Nx/2×Nz/2

F̃BEV Deconv (3×3) 64 Nx×Nz

3D Detection Head
conv cls F̃BEV Conv (3×3)×2 64 Nx×Nz

bbox cls conv cls Conv (3×3) 6×3 Nx×Nz

bbox dir conv cls Conv (1×1) 6×2 Nx×Nz

conv reg F̃BEV Conv (3×3)×2 64 Nx×Nz

bbox reg conv reg Conv (3×3) 6×7 Nx×Nz

2D Detection Head
conv cls fpn i (i=0, 1, 2, 3, 4) Conv (3×3)×4 64 H/4·2i×W/4·2i

bbox cls conv cls Conv (3×3) 3 H/4·2i×W/4·2i

conv reg fpn i (i=0, 1, 2, 3, 4) Conv (3×3)×4 64 H/4·2i×W/4·2i

bbox reg conv reg Conv (3×3) 3×4 H/4·2i×W/4·2i

bbox centerness conv reg Conv (3×3) 1 H/4·2i×W/4·2i

Table 1. Detailed network structure of our stereo-based 3D detection network. By default, the convolution layers in the 2D feature extraction
module and the 2D head module are followed by batch normalization layers, and the other convolution layers are attached with group
normalization layers (the number of groups is set to 32).

Output Input Module Config #Channel Size
Sparse 3D Convolution Backbone

conv1 input SpConv (3×3×3) 16 4Nx×2Ny×4Nz

conv2 SpConv (3×3×3)×3, s=2 32 2Nx×Ny×2Nz

conv3 SpConv (3×3×3)×3, s=2 64 Nx×Ny/2×Nz

conv4 SpConv (3×3×3)×3, s=1×2×1 64 Nx×Ny/4×Nz

V3d SpConv (1×1×1) 32 Nx×Ny/4×Nz

FBEV Reshape; Conv (3×3) 32×Ny/4, 64 Nx×Nz

BEV Aggregation Network & 3D Detection Head
Same as the stereo detector, see Table 1

Table 2. Detailed network structure of the LiDAR detector.



IoU U-Net Uni-modal Car AP3D
Easy Mod Hard
76.44 56.73 49.52

X 78.31 59.17 52.07
X X 78.95 59.72 54.03
X X X 81.34 61.35 54.56

Table 3. Ablation studies for the tricks.

Supervision Err. Med. < 0.2m < 0.4m AP3D
Fg/All (mm) Fg/All (%) Fg/All (%) (%)

Smooth L1 0.64 / 0.13 61.7 / 37.4 40.0 / 22.6 78.9 / 59.7 / 54.0
L1 0.61 / 0.10 55.2 / 32.9 35.7 / 20.5 78.3 / 61.3 / 54.2

Hard-assigned 0.63 / 0.094 50.9 / 29.9 32.8 / 18.7 80.1 / 61.2 / 54.5
Gaussian σ=0.2 0.63 / 0.092 50.5 / 29.5 32.3 / 18.2 78.5 / 61.2 / 55.9
Gaussian σ=0.4 0.66 / 0.11 55.1 / 32.6 35.4 / 19.7 78.5 / 61.8 / 54.9
Gaussian σ=0.8 0.70 / 0.13 59.5 / 37.1 38.4 / 22.0 75.7 / 58.8 / 51.9

Laplacian λ=0.2 0.64 / 0.10 52.9 / 31.3 33.8 / 19.3 80.7 / 62.3 / 55.3
Laplacian λ=0.4 0.66 / 0.11 55.5 / 33.4 35.6 / 20.3 79.0 / 61.4 / 54.6
Laplacian λ=0.8 0.68 / 0.13 58.9 / 36.9 38.2 / 22.2 77.5 / 59.0 / 52.2
Bilinear (Eq.(6)) 0.63 / 0.091 51.1 / 29.9 33.1 / 18.7 81.2 / 61.5 / 54.6

Table 4. Comparison between different depth losses. Depth Err.
Med. denotes the average median of depth errors. Foreground
(Fg in the Table) metrics are evaluated by averaging object-level
results, where boxes with less than 5 ground-truth LiDAR points
are ignored.

attached with one anchor box. The anchor box sizes for
each level are set to {32, 64, 128, 256, 512}. Please refer to
the original paper of ATSS [8] for details.

1.2. The Structure of the LiDAR Detector

The main structure of the LiDAR teacher detector fol-
lows that of SECOND [7] with minor modifications. We
utilize the same BEV aggregation network and 3D detec-
tion head as the stereo detector. Detailed network structure
is described in Table 2.

2. More Ablation Studies
2.1. Influence of the trick modifications

To improve the performance of the baseline model
DSGN [2], we made several important modifications for
both training stability and detection performance. The mod-
ifications include adding extra IoU-based regression loss,
constructing stereo volume using full-resolution 2D feature,
and replacing soft-argmin [1] with the uni-modal depth su-
pervision loss. The ablation results are shown in Table 3.
The effectiveness of the IoU regression Loss. In previous
stereo-based 3D detector implementations, the loss coeffi-
cients for regressing locations, orientations, and sizes are
usually the same. Although tuning these coefficients has the
potential to improve performance, it is trivial and not adapt-
able. The IoU regression loss [10, 4] instead directly max-
imizes the 3D IoU between predictions and targets, which
can implicitly adapt the regression coefficients. Our results
in Table 3 show that the IoU loss can improve about 2.5%
mAP for cars.

2D Detection
pt

AP2D
Network Car Ped Cyc

ResNet-34 [3] X 88.3 66.4 49.4
ResNet-34 [3] w/o MaxPool X 93.2 71.9 58.3

Ours (2D only) 88.6 51.7 36.3
Ours (2D only) ∗ 91.6 54.3 41.6
Ours (2D only) X 93.2 69.2 59.2

Ours (Full model) 90.8 51.9 34.3
Ours (Full model) ∗ 91.3 60.2 47.2

Table 5. Ablation studies for 2D detection head. ∗ only loads pre-
trained weights in conv1, conv2, and conv3.

Construct stereo volume with high-resolution features.
In PSMNet [1] and DSGN [2], the stereo volume is con-
structed using left-right image features of 1/4 size. How-
ever, for stereo detection, high-resolution features are essen-
tial to improve the depth estimation precision, especially for
distant objects. Inspired by the observation, we append an
extra small upsampling network (U-Net) to construct full-
resolution features from SPP features. From Table 3, the
U-Net improves the 3D detection performance of moderate
samples by 0.6% mAP and hard samples by 2.0% mAP.
Depth Supervision Loss. According to [9], indirectly
learning cost volume by soft-argmin and smooth-L1 loss
is prone to overfitting since the cost volume is under
constrained. In comparison, directly minimizing Kull-
back–Leibler divergence between the predicted distribution
and the unimodal distribution centered at true disparities
provides stronger constraints to the cost volume, which can
learn more robust implicit depth features Ṽst. Since the
ground-truth distribution is constant, the KL divergence can
be simplified as cross entropy loss with soft targets,

Ldepth =
1

Ngt

∑
u,v

∑
w

[−p∗w logPst(u, v, w)] , (3)

where p∗w is the ground-truth distribution centered at true
disparity d∗. Here we investigate several variants of ground-
truth distributions, including the bilinearly interpolated dis-
tribution (Eq. (6) in the paper), hard-assigned distribu-
tion (pw=1 if d(w) is closest to d∗), gaussian distribu-
tion (pw∝ exp

(
− 1

2 (
d(w)−d∗

σ )2
)

), and laplacian distribu-

tion (pw∝ exp
(
− |d(w)−d∗|

λ

)
). The results are shown in Ta-

ble 4. To evaluate local depth embeddings, instead of using
global soft-argmin [1] to parse depth values from depth dis-
tributions, we employ local soft-argmin to predict the final
depth,

d̃u,v =

k+2∑
w=k−2

d(w) · Pst(u, v, w)
k+2∑

w′=k−2

Pst(u, v, w′)

, (4)



Figure 1. Visualization results of the KITTI validation set. The green boxes are ground-truth 3D / BEV bounding boxes. The blue boxes
are our predictions. The numbers around the ground-truth BEV boxes are the IoU values of their best predictions. The IoU values will be
zero if the corresponding 3D boxes are not detected.

where k=argmax(Pst(u, v, :)) is the depth index with the
maximum probability. Local soft-argmin can avoid the in-
fluence of the probability values that are far from the peak

probability, which can be utilized to evaluate the local ge-
ometric accuracy of the implicit stereo embeddings Ṽst.
Results in Table 4 show that ground-truth distributions p∗w



Figure 2. Failure Cases.

that are sharper and more concentrated around d∗ can give
better results. The choice of distribution encoding meth-
ods is not essential, and hard-assigned distribution can even
give better performance than L1 loss. The good choices in-
clude hard-assigned distribution, gaussian distribution with
σ=0.2, laplacian distribution with λ=0.2, and bilinearly in-
terpolated distribution.

2.2. 2D Detection Performance

We compare our 2D detection branch with ResNet-34 [3]
to confirm that our semantic bottleneck Fsem does not con-
strain the performance of 2D detection. Since our model
does not employ max pooling after conv1, we give the re-
sults of ResNet-34 without max pooling in the second row
of Table 5 for fair comparison. By comparing the results
of ResNet-34 w/o Maxpool and Ours (2D only), both mod-
els achieve similar performance given ImageNet pretrained
weights, which proves that the semantic bottleneck does not

constrain the 2D detection performance and has the capa-
bility of learning good semantic features. By comparing
the models without and with ImageNet pretrained weights,
we can see pretrained weights are essential for 2D detection
due to the limit of training data in the KITTI dataset.

3. Visualization Results

Please see the visualization results in Fig. 1. Most of the
objects can be detected with high IoU successfully, even for
distant objects. We also visualize several failure cases in
Fig. 2. Most of the failure cases are caused by occlusions
and depth estimation errors. Several predictions give large
orientation errors, which we believe can be fixed by incor-
porating predictions of 2D key-points of bounding boxes in
the future.
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