
Supplementary Materials to Learning Dynamic Interpolation for Extremely
Sparse Light Fields with Wide Baselines

In this document, we provide the supplementary information for the ICCV 2021 paper titled with “Learning Dynamic
Interpolation for Extremely Sparse Light Fields with Wide Baselines”. The rest of the document is organized as follows:

• Section 1 visually presents the dynamic weights learned by our method.

• Section 2 gives the quantitative comparisons of different methods over narrow-baseline light field (LF) datasets.

• Section 3 gives more visual results on the MPI dataset [1].

• Section 4 gives the detailed network architectures of convolutional neural networks and multilayer perceptrons (MLPs)
of our framework.

1. Learned Dynamic Weights
We presented the learned weights for synthesizing pixels of the novel views, taking the foreground and background pixels

around the occlusion boundary as examples. From Fig. 1 and Fig. 2, we can observe that (1) our method assigns large weight
values to the correspondences of the synthesized pixels, except for the occluded ones, which validates the learned weights
implicitly incorporate the geometry information of the novel view; and (2) our method well handles the occlusion boundary
by assigning large weights only on the foreground or background neighbors, which validates our method can learn content-
adaptive interpolation weights. Additionally, Fig. 2 shows that although the correspondence of the synthesized pixel in the
right input view is occluded by the foreground object, our method can still adaptively assign large weight to a background
pixel which has the same intensity as the synthesized one, demonstrating the potential of our method to handle the challenging
problem of occlusions.

2. Quantitative Comparisons on Narrow-baseline Datasets
We quantitatively compared different methods over two narrow-baseline LF datasets, including 30 real-world LF images

from the Kalantari Lytro dataset [4], denoted as 30 scenes, and 24 synthetic LF images from the HCI dataset [2]. All methods
directly used the models trained on the wide-baseline dataset, i.e., Inria Sparse LF dataset [5]. The input disparity ranges and
quantitative results of different methods are shown in Table 1, where it can be observed that Ours (RAFT) outperforms other
methods on both two narrow-baseline LF datasets.

Table 1. Quantitative comparisons (PSNR/SSIM) of different methods over the 30 scenes [4] and HCI [2] datasets.

Dataset Disparity range Baseline
Kalantari
et al. [4]

Wu
et al. [6]

Jin
et al. [3]

Ours
(PWCNet)

Ours
(RAFT)

30 scenes [-4.0, 4.0] 38.47/0.973 22.27/0.718 41.31/0.983 41.63/0.985 41.34/0.983 42.28/0.986
HCI [-16.0, 16.0] 37.13/0.959 27.64/0.768 39.31/0.966 39.28/0.966 39.88/0.971 41.25/0.977
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Figure 1. Neighborhoods and learned dynamic weights for synthesizing the foreground pixel around the occlusion boundary. The syn-
thesized pixel is highlighted with a red dot in the synthesized view. The pixels corresponding to the maximum weight values in the
neighborhoods are highlighted with green and yellow dots in left and right input views, respectively. Below input views, from top to bot-
tom: (a) and (h) are the zoom-in of the neighbors highlighted with green and yellow straight lines, respectively; (b) and (i) are the learned
weights corresponding to (a) and (h), respectively; (c) and (j) are the zoom-in of the neighbors highlighted with blue straight lines; and (d)
and (k) are learned dynamic weights corresponding to (c) and (j), respectively. The regions with red, green, and yellow frames around the
synthesized pixel and maximum-weight pixels are also zoomed in, i.e., (e), (f), and (g), for better visualization.
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Figure 2. Neighborhoods and learned dynamic weights for synthesizing the background pixel around the occlusion boundary. The syn-
thesized pixel is highlighted with a red dot in the synthesized view. The pixels corresponding to the maximum weight values in the
neighborhoods are highlighted with green and yellow dots in left and right input views, respectively. Below input views, from top to bot-
tom: (a) and (h) are the zoom-in of the neighbors highlighted with green and yellow straight lines, respectively; (b) and (i) are the learned
weights corresponding to (a) and (h), respectively; (c) and (j) are the zoom-in of the neighbors highlighted with blue straight lines; and (d)
and (k) are learned dynamic weights corresponding to (c) and (j), respectively. The regions with red, green, and yellow frames around the
synthesized pixel and maximum-weight pixels are also zoomed in, i.e., (e), (f), and (g), for better visualization.



3. Visual Results
We provide more visual comparisons of reconstructed LFs from different methods over the MPI dataset [1]. As shown in

Fig. 3, it can be observed that our method can reconstruct LFs with higher visual quality than other methods, which further
demonstrates the advantages of our method.
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Figure 3. Visual comparisons of reconstructed LFs from different methods over the MPI dataset [1]. The input disparity range of each LF
is shown on the left.

4. Detailed Network Architectures
We provide the detailed network architectures of the content embedding network fc(·), geometry-based spatial refinement

network fr(·), dynamic weights MLP fw(·), and confidence MLP fb(·) in Tables 2, 3, 4, and 5, respectively.

Table 2. The detailed architecture of content embedding network fc(·).
input size layer kernel size output size

32× 192 conv 0 3× 3, 64
32× 192relu

32× 192 res block 1
3× 3, 64

32× 192relu
3× 3, 64

32× 192 res block 2
3× 3, 64

32× 192relu
3× 3, 64

32× 192 res block 3
3× 3, 64

32× 192relu
3× 3, 64

32× 192 res block 4
3× 3, 64

32× 192relu
3× 3, 64

32× 192 conv last 3× 3, 64 32× 192



Table 3. The detailed architecture of geometry-based spatial refinement network fr(·).
input size layer kernel size output size

32× 32 conv 0 3× 3, 64
32× 32relu

32× 32 res block 1
3× 3, 64

32× 32relu
3× 3, 64

32× 32 res block 2
3× 3, 64

32× 32relu
3× 3, 64

32× 32 res block 3
3× 3, 64

32× 32relu
3× 3, 64

32× 32 res block 4
3× 3, 64

32× 32relu
3× 3, 64

32× 32 conv last 3× 3, 1 32× 32

Table 4. The detailed architecture of dynamic weights MLP fw(·).
input size layer output size

67 linear 67relu

67 linear 67relu

67 linear 67relu

67 linear 67relu

67 linear 67relu
67 linear 1

Table 5. The detailed architecture of confidence MLP fb(·).
input size layer output size

67 linear 67relu

67 linear 67relu

67 linear 67relu

67 linear 67relu

67 linear 67relu
reshape

161*67 linear 1
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