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A. Implementation Details
Our part encoder consists of six stride-2 partial convo-

lutions [9] and two sibling fully-connected (FC) layers to
extract part-features and produce part-noise. Our painting
generator is composed of five repainting residual blocks and
a normal residual blocks. We adopt the similar structure to
DenseNet [4] as our whole discriminator and multi-scale
PatchGAN [6] as our painting discriminator. Our network
is trained using Adam optimizer [8] with parameters of
β1 = 0.0, β2 = 0.9, learning rate α1 = 0.0001 for part en-
coder and painting generator, and learning rate α2 = 0.0004
for whole and painting discriminators.

Figure A shows the detailed architecture of our Repaint-
ing Residual Block (RRB). Table A, Table B, Table C, and
Table D present the detailed architectures of our part en-
coder, painting generator, whole discriminator, and painting
discriminator, respectively.

Layer ID Type Norm Act. K S P Out
1 PConv IN LReLU 3 2 1 64
2 PConv IN LReLU 3 2 1 128
3 PConv IN LReLU 3 2 1 256
4 PConv IN LReLU 3 2 1 512
5 PConv IN LReLU 3 2 1 512
6 PConv IN LReLU 3 2 1 512
7 FC FC – – – – – 256

Table A. The architecture of our part encoder. “Norm” denotes
normalization type after convolution, “Act.” denotes activation
type, “K” denotes kernel size, “S” denotes stride, “P” denotes
padding, and “Out” denotes output channel number. “PConv”
means partial convolution [9], “IN” means instance normaliza-
tion [13], and “LReLU” means Leaky ReLU [10] with a negative
slope of 0.2.
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Figure A. The detailed architecture of our Repainting Residual
Block (RRB).

Layer ID Type Norm Act. K S P Out
1 FC – – – – – 16384
2 RRB – – – – – 1024
3 RRB – – – – – 1024
4 RRB – – – – – 512
5 RRB – – – – – 256
6 RRB – – – – – 128
7 RB – – – – – 64
8 PRM – – – – – 64
9 Conv – Tanh 3 1 1 3

Table B. The architecture of our painting generator and the fol-
lowing structure. “Norm” denotes normalization type after con-
volution, “Act.” denotes activation type, “K” denotes kernel size,
“S” denotes stride, “P” denotes padding, and “Out” denotes output
channel number. “RRB” means repainting residual block, “RB”
means normal residual block (“RRB” without repainting layer),
and “PRM” means part-patch refining module. Please refer to Fig-
ures 3 and 4 in the paper for details of RRB and PRM respectively.
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Layer ID Type Skip Norm Act. K S P Out
1 Conv – BN ReLU 7 2 3 64
2 Max Pool – BN ReLU 3 2 1 64
3 Conv – BN ReLU 1 1 0 128
4 Conv 2 BN ReLU 3 1 1 96
5 Conv – BN ReLU 1 1 0 128
6 Conv 2,4 BN ReLU 3 1 1 128
7 Conv – BN ReLU 1 1 0 128
8 Conv 2,4,6 BN ReLU 3 1 1 160
9 Conv – – – 1 1 0 80
10 Average Pool – BN ReLU 2 2 0 80
11 Conv – BN ReLU 1 1 0 128
12 Conv 10 BN ReLU 3 1 1 112
13 Conv – BN ReLU 1 1 0 128
14 Conv 10,12 BN ReLU 3 1 1 144
15 Conv – BN ReLU 1 1 0 128
16 Conv 10,12,14 BN ReLU 3 1 1 176
17 Conv – – – 1 1 0 88
18 Average Pool – BN ReLU 2 2 0 88
19 Conv – BN ReLU 1 1 0 128
20 Conv 18 BN ReLU 3 1 1 120
21 Conv – BN ReLU 1 1 0 128
22 Conv 18,20 BN ReLU 3 1 1 152
23 Conv – BN ReLU 1 1 0 128
24 Conv 18,20,22 BN ReLU 3 1 1 184
25 Average Pool – – Sigmoid 7 1 0 184

Table C. The architecture of our whole discriminator. “Skip”
denotes the layer IDs of concatenated feature maps before nor-
malization, “Norm” denotes normalization type, “Act.” denotes
activation type, “K” denotes kernel size, “S” denotes stride, “P”
denotes padding, and “Out” denotes output channel number. “BN”
means batch normalization [5].

Layer ID Type Norm Act. K S P Out
Scale I

1 Conv SN LReLU 4 2 2 64
2 Conv SN LReLU 4 2 2 128
3 Conv SN LReLU 4 2 2 256
4 Conv SN LReLU 4 1 2 512
5 Conv SN Sigmoid 4 1 2 1

Scale II
1 Average Pool – – 3 2 1 –
2 Conv SN LReLU 4 2 2 64
3 Conv SN LReLU 4 2 2 128
4 Conv SN LReLU 4 2 2 256
5 Conv SN LReLU 4 1 2 512
6 Conv SN Sigmoid 4 1 2 1

Table D. The architecture of our painting discriminator.
“Norm” denotes normalization type after convolution, “Act.” de-
notes activation type, “K” denotes kernel size, “S” denotes stride,
“P” denotes padding, and “Out” denotes output channel number.
“SN” means spectral normalization [11], and “LReLU” means
Leaky ReLU [10] with a negative slope of 0.2.

B. Dataset Splitting
We list dataset splitting for training and testing in Ta-

ble E, where, we keep default official split on AFHQ Cat,
Cityscapes, and Places2, while we randomly select samples
on CelebA-HQ, CUB, Flowers, and Paris StreetView.

Dataset Training Testing Total
Inpainting
CelebA-HQ [7] 28, 000 2, 000 30, 000
Places2 (10 Categories) [15] 50, 000 100 50, 100
Regular Outpainting
CelebA-HQ [7] 28, 000 2, 000 30, 000
CUB [14] 4, 200 915 5, 115
AFHQ Cat [1] 5, 153 500 5, 653
Flowers [12] 7, 000 1, 189 8, 189
Paris StreetView [3] 13, 000 1, 900 14, 900
Cityscapes [2] 2, 975 1, 525 4, 500
Places2 Desert Road [15] 5, 000 100 5, 100
Irregular Outpainting
CelebA-HQ [7] 28, 000 2, 000 30, 000
Places2 (10 Categories) [15] 50, 000 100 50, 100

Table E. Dataset splitting for training and testing in inpaing-
ing, regular outpainting, irregular outpainting. For Places2
of inpainting and irregular outpainting, we choose the following
10 categories for training: “valley”, “sky”, “desert road”, “high-
way”, “mountain”, “mountain snow”, “mountain path”, “snow-
field”, “lake natural”, and “river”, while we use “valley” category
for testing.

C. Additional Qualitative Results
We show additional qualitative results of inpainting in

Figures B and C, regular outpainting in Figures D–J, and ir-
regular outpainting on different datasets in Figures K and L.
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Figure B. Additional qualitative results of image inpainting on CelebA-HQ [7].
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Figure C. Additional qualitative results of image inpainting on Places2 [15].
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Figure D. Additional qualitative results of regular image outpainting on CelebA-HQ [7].
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Figure E. Additional qualitative results of regular image outpainting on CUB [14].
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Figure F. Additional qualitative results of regular image outpainting on AFHQ Cat [1].
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Figure G. Additional qualitative results of regular image outpainting on Flowers [12].
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Figure H. Additional qualitative results of regular image outpainting on Paris StreetView [3]. Red boxes mark parts.
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Figure I. Additional qualitative results of regular image outpainting on Cityscapes [2]. Red boxes mark parts.
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Figure J. Additional qualitative results of regular image outpainting on Places2 Desert Road [15].
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Figure K. Additional qualitative results of irregular image outpainting on CelebA-HQ [7].
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Figure L. Additional qualitative results of irregular image outpainting on Places2 [15].


